Application of neural networks in the teacher selection process

Descripción del Articulo

The information and communications technologies are revolutionizing the classic ways of carrying out the processes, in particular, for the teacher selection processes we have the classic form of evaluation, according to the criteria of each educational institution, in the present work it is presente...

Descripción completa

Detalles Bibliográficos
Autores: Ovalle, Christian, Auccahuasi, Wilver, Meza, Sandra, Cordova-Buiza, Franklin, Rojas, Karin, Cosme, Miryam, Inciso-Rojas, Miryam, Aiquipa, Gabriel, Campos Martínez, Hernando Martin, Fuentes, Alfonso, Auccahuasi, Aly
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/3490
Enlace del recurso:https://hdl.handle.net/20.500.12640/3490
https://doi.org/10.1016/j.procs.2023.01.092
Nivel de acceso:acceso abierto
Materia:Selection
Classification
Network
Sensitivity
Specificity
Selección
Clasificación
Red
Sensibilidad
Especificidad
https://purl.org/pe-repo/ocde/ford#1.02.01
id ESAN_52320720449ac34e5f4e43e8399436be
oai_identifier_str oai:repositorio.esan.edu.pe:20.500.12640/3490
network_acronym_str ESAN
network_name_str ESAN-Institucional
repository_id_str 4835
spelling Ovalle, ChristianAuccahuasi, WilverMeza, SandraCordova-Buiza, FranklinRojas, KarinCosme, MiryamInciso-Rojas, MiryamAiquipa, GabrielCampos Martínez, Hernando MartinFuentes, AlfonsoAuccahuasi, Aly2023-07-20T16:36:06Z2023-07-20T16:36:06Z2023-01-31Ovalle, C., Auccahuasi, W., Meza, S., Cordova-Buiza, F., Rojas, K., Cosme, M., Inciso-Rojas, M., Aiquipa, G., Campos Martínez, H. M., Fuentes, A., & Auccahuasi, A. (2023). Application of neural networks in the teacher selection process. Procedia Computer Science, 218, 1132-1143. https://doi.org/10.1016/j.procs.2023.01.092https://hdl.handle.net/20.500.12640/3490https://doi.org/10.1016/j.procs.2023.01.092The information and communications technologies are revolutionizing the classic ways of carrying out the processes, in particular, for the teacher selection processes we have the classic form of evaluation, according to the criteria of each educational institution, in the present work it is presented a teacher selection model, using neural networks, using 3 criteria and 23 characteristics, which are entered into individual networks for each criterion and additionally a network for the final classification, is presented based on a prototype, an application developed with the computational tool Matlab, which is described in detail for its application and scaling, for purposes of measuring the performance of the network, evaluations were carried out with a group of 30 candidates, grouped into two groups, a group of 15 candidates with positive conditions complying with the policies of the educational institution and a second group with candidates who do not meet the policies of the educational institution, with which sensitivity values ​​of 93% and a specificity level of 86% were obtained, we conclude that the model presented can be replicated and conditioned to the needs and policies of each educational institution.application/pdfInglésengElsevierNLurn:issn:1877-0509https://www.sciencedirect.com/science/article/pii/S1877050923000923/pdf?md5=514154daca76f1b4d4e139be582c7697&pid=1-s2.0-S1877050923000923-main.pdfinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://creativecommons.org/licenses/by-nc-nd/4.0/SelectionClassificationNetworkSensitivitySpecificitySelecciónClasificaciónRedSensibilidadEspecificidadhttps://purl.org/pe-repo/ocde/ford#1.02.01Application of neural networks in the teacher selection processinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANhttps://orcid.org/0000-0002-4650-1340Acceso abiertoProcedia Computer Science11431132218ORIGINALmeza2023a.pdfmeza2023a.pdfTexto completoapplication/pdf939842https://repositorio.esan.edu.pe/bitstreams/9f66f07c-ebe4-4b15-9b27-7eb652175a6f/download9522c1f5749a010248996865dba4ecc9MD51trueAnonymousREADTHUMBNAILmeza2023a.pdf.jpgmeza2023a.pdf.jpgGenerated Thumbnailimage/jpeg5110https://repositorio.esan.edu.pe/bitstreams/cc376a47-9ced-4f19-a325-678c39929f18/downloadb2f3dc3d76c3eaae6787c1f4251543dfMD55falseAnonymousREADTEXTmeza2023a.pdf.txtmeza2023a.pdf.txtExtracted texttext/plain57866https://repositorio.esan.edu.pe/bitstreams/008227f1-a70e-439d-9d4d-a553c4de3f0e/downloadb151b8a94cad0dc6e41085adf52bbea1MD54falseAnonymousREAD20.500.12640/3490oai:repositorio.esan.edu.pe:20.500.12640/34902024-11-25 19:41:27.445https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe
dc.title.en_EN.fl_str_mv Application of neural networks in the teacher selection process
title Application of neural networks in the teacher selection process
spellingShingle Application of neural networks in the teacher selection process
Ovalle, Christian
Selection
Classification
Network
Sensitivity
Specificity
Selección
Clasificación
Red
Sensibilidad
Especificidad
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Application of neural networks in the teacher selection process
title_full Application of neural networks in the teacher selection process
title_fullStr Application of neural networks in the teacher selection process
title_full_unstemmed Application of neural networks in the teacher selection process
title_sort Application of neural networks in the teacher selection process
author Ovalle, Christian
author_facet Ovalle, Christian
Auccahuasi, Wilver
Meza, Sandra
Cordova-Buiza, Franklin
Rojas, Karin
Cosme, Miryam
Inciso-Rojas, Miryam
Aiquipa, Gabriel
Campos Martínez, Hernando Martin
Fuentes, Alfonso
Auccahuasi, Aly
author_role author
author2 Auccahuasi, Wilver
Meza, Sandra
Cordova-Buiza, Franklin
Rojas, Karin
Cosme, Miryam
Inciso-Rojas, Miryam
Aiquipa, Gabriel
Campos Martínez, Hernando Martin
Fuentes, Alfonso
Auccahuasi, Aly
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ovalle, Christian
Auccahuasi, Wilver
Meza, Sandra
Cordova-Buiza, Franklin
Rojas, Karin
Cosme, Miryam
Inciso-Rojas, Miryam
Aiquipa, Gabriel
Campos Martínez, Hernando Martin
Fuentes, Alfonso
Auccahuasi, Aly
dc.subject.en_EN.fl_str_mv Selection
Classification
Network
Sensitivity
Specificity
topic Selection
Classification
Network
Sensitivity
Specificity
Selección
Clasificación
Red
Sensibilidad
Especificidad
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.es_ES.fl_str_mv Selección
Clasificación
Red
Sensibilidad
Especificidad
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description The information and communications technologies are revolutionizing the classic ways of carrying out the processes, in particular, for the teacher selection processes we have the classic form of evaluation, according to the criteria of each educational institution, in the present work it is presented a teacher selection model, using neural networks, using 3 criteria and 23 characteristics, which are entered into individual networks for each criterion and additionally a network for the final classification, is presented based on a prototype, an application developed with the computational tool Matlab, which is described in detail for its application and scaling, for purposes of measuring the performance of the network, evaluations were carried out with a group of 30 candidates, grouped into two groups, a group of 15 candidates with positive conditions complying with the policies of the educational institution and a second group with candidates who do not meet the policies of the educational institution, with which sensitivity values ​​of 93% and a specificity level of 86% were obtained, we conclude that the model presented can be replicated and conditioned to the needs and policies of each educational institution.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-20T16:36:06Z
dc.date.available.none.fl_str_mv 2023-07-20T16:36:06Z
dc.date.issued.fl_str_mv 2023-01-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.other.none.fl_str_mv Artículo
format article
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Ovalle, C., Auccahuasi, W., Meza, S., Cordova-Buiza, F., Rojas, K., Cosme, M., Inciso-Rojas, M., Aiquipa, G., Campos Martínez, H. M., Fuentes, A., & Auccahuasi, A. (2023). Application of neural networks in the teacher selection process. Procedia Computer Science, 218, 1132-1143. https://doi.org/10.1016/j.procs.2023.01.092
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12640/3490
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.procs.2023.01.092
identifier_str_mv Ovalle, C., Auccahuasi, W., Meza, S., Cordova-Buiza, F., Rojas, K., Cosme, M., Inciso-Rojas, M., Aiquipa, G., Campos Martínez, H. M., Fuentes, A., & Auccahuasi, A. (2023). Application of neural networks in the teacher selection process. Procedia Computer Science, 218, 1132-1143. https://doi.org/10.1016/j.procs.2023.01.092
url https://hdl.handle.net/20.500.12640/3490
https://doi.org/10.1016/j.procs.2023.01.092
dc.language.none.fl_str_mv Inglés
dc.language.iso.none.fl_str_mv eng
language_invalid_str_mv Inglés
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1877-0509
dc.relation.uri.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050923000923/pdf?md5=514154daca76f1b4d4e139be582c7697&pid=1-s2.0-S1877050923000923-main.pdf
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
dc.publisher.country.none.fl_str_mv NL
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:ESAN-Institucional
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str ESAN-Institucional
collection ESAN-Institucional
bitstream.url.fl_str_mv https://repositorio.esan.edu.pe/bitstreams/9f66f07c-ebe4-4b15-9b27-7eb652175a6f/download
https://repositorio.esan.edu.pe/bitstreams/cc376a47-9ced-4f19-a325-678c39929f18/download
https://repositorio.esan.edu.pe/bitstreams/008227f1-a70e-439d-9d4d-a553c4de3f0e/download
bitstream.checksum.fl_str_mv 9522c1f5749a010248996865dba4ecc9
b2f3dc3d76c3eaae6787c1f4251543df
b151b8a94cad0dc6e41085adf52bbea1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional ESAN
repository.mail.fl_str_mv repositorio@esan.edu.pe
_version_ 1843261872624631808
score 13.936249
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).