Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
Descripción del Articulo
Purpose – This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach – Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2018 |
Institución: | Universidad ESAN |
Repositorio: | ESAN-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.esan.edu.pe:20.500.12640/2590 |
Enlace del recurso: | https://revistas.esan.edu.pe/index.php/jefas/article/view/114 https://hdl.handle.net/20.500.12640/2590 https://doi.org/10.1108/JEFAS-06-2017-0075 |
Nivel de acceso: | acceso abierto |
Materia: | Abnormal returns Gray theory Nash nonlinear gray Bernoulli model Nonlinear gray Bernoulli model Rendimientos anormales Teoría de Gray Modelo Bernoulli gris no lineal de Nash Modelo Bernoulli gris no lineal https://purl.org/pe-repo/ocde/ford#5.02.04 |
id |
ESAN_3952f3a004c50e42b1248cd68880be46 |
---|---|
oai_identifier_str |
oai:repositorio.esan.edu.pe:20.500.12640/2590 |
network_acronym_str |
ESAN |
network_name_str |
ESAN-Institucional |
repository_id_str |
4835 |
dc.title.en_EN.fl_str_mv |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
title |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
spellingShingle |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model Doryab, Bahar Abnormal returns Gray theory Nash nonlinear gray Bernoulli model Nonlinear gray Bernoulli model Rendimientos anormales Teoría de Gray Modelo Bernoulli gris no lineal de Nash Modelo Bernoulli gris no lineal https://purl.org/pe-repo/ocde/ford#5.02.04 |
title_short |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
title_full |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
title_fullStr |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
title_full_unstemmed |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
title_sort |
Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model |
author |
Doryab, Bahar |
author_facet |
Doryab, Bahar Salehi, Mahdi |
author_role |
author |
author2 |
Salehi, Mahdi |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Doryab, Bahar Salehi, Mahdi |
dc.subject.en_EN.fl_str_mv |
Abnormal returns Gray theory Nash nonlinear gray Bernoulli model Nonlinear gray Bernoulli model |
topic |
Abnormal returns Gray theory Nash nonlinear gray Bernoulli model Nonlinear gray Bernoulli model Rendimientos anormales Teoría de Gray Modelo Bernoulli gris no lineal de Nash Modelo Bernoulli gris no lineal https://purl.org/pe-repo/ocde/ford#5.02.04 |
dc.subject.es_ES.fl_str_mv |
Rendimientos anormales Teoría de Gray Modelo Bernoulli gris no lineal de Nash Modelo Bernoulli gris no lineal |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.02.04 |
description |
Purpose – This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach – Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the Nash nonlinear gray Bernoulli model. Findings – Results show that the Nash nonlinear gray Bernoulli model can predict abnormal stock returns that are defined by conditions other than gray models which predict increases, and then after checking regression models, the Bernoulli regression model is defined, which gives higher accuracy and fewer errors than the other two models. Originality/value – The stock market is one of the most important markets, which is influenced by several factors. Thus, accurate and reliable techniques are necessary to help investors and consumers find detailed and exact ways to predict the stock market. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2021-10-30T01:52:36Z |
dc.date.available.none.fl_str_mv |
2021-10-30T01:52:36Z |
dc.date.issued.fl_str_mv |
2018-06-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.other.none.fl_str_mv |
Artículo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.esan.edu.pe/index.php/jefas/article/view/114 |
dc.identifier.citation.none.fl_str_mv |
Doryab, B., & Salehi, M. (2018). Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model. Journal of Economics, Finance and Administrative Science, 23(44), 95-112. https://doi.org/10.1108/JEFAS-06-2017-0075 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12640/2590 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1108/JEFAS-06-2017-0075 |
url |
https://revistas.esan.edu.pe/index.php/jefas/article/view/114 https://hdl.handle.net/20.500.12640/2590 https://doi.org/10.1108/JEFAS-06-2017-0075 |
identifier_str_mv |
Doryab, B., & Salehi, M. (2018). Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model. Journal of Economics, Finance and Administrative Science, 23(44), 95-112. https://doi.org/10.1108/JEFAS-06-2017-0075 |
dc.language.none.fl_str_mv |
Inglés |
dc.language.iso.none.fl_str_mv |
eng |
language_invalid_str_mv |
Inglés |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2218-0648 |
dc.relation.uri.none.fl_str_mv |
https://revistas.esan.edu.pe/index.php/jefas/article/view/114/90 |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidad ESAN. ESAN Ediciones |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad ESAN. ESAN Ediciones |
dc.source.none.fl_str_mv |
reponame:ESAN-Institucional instname:Universidad ESAN instacron:ESAN |
instname_str |
Universidad ESAN |
instacron_str |
ESAN |
institution |
ESAN |
reponame_str |
ESAN-Institucional |
collection |
ESAN-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.esan.edu.pe/bitstreams/44830b44-7095-4da6-bb06-6e821ab4fed6/download https://repositorio.esan.edu.pe/bitstreams/da4816ce-959e-4923-a893-591bd4303961/download https://repositorio.esan.edu.pe/bitstreams/109be320-88b1-4874-ab8a-e219f544e3e4/download https://repositorio.esan.edu.pe/bitstreams/173f79bd-9664-451c-864f-d274a90bd2e0/download |
bitstream.checksum.fl_str_mv |
0b3b58918313ec1b34477bb4ff530e80 c04eb7278984cc9084140d0f3b8aae6c f518dfea8f2b5eb33d8fcb83e4b33cfa 016c0aeb6f871e875e93c80cd986876a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional ESAN |
repository.mail.fl_str_mv |
repositorio@esan.edu.pe |
_version_ |
1835651550035312640 |
spelling |
Doryab, BaharSalehi, Mahdi2021-10-30T01:52:36Z2021-10-30T01:52:36Z2018-06-01https://revistas.esan.edu.pe/index.php/jefas/article/view/114Doryab, B., & Salehi, M. (2018). Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model. Journal of Economics, Finance and Administrative Science, 23(44), 95-112. https://doi.org/10.1108/JEFAS-06-2017-0075https://hdl.handle.net/20.500.12640/2590https://doi.org/10.1108/JEFAS-06-2017-0075Purpose – This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach – Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the Nash nonlinear gray Bernoulli model. Findings – Results show that the Nash nonlinear gray Bernoulli model can predict abnormal stock returns that are defined by conditions other than gray models which predict increases, and then after checking regression models, the Bernoulli regression model is defined, which gives higher accuracy and fewer errors than the other two models. Originality/value – The stock market is one of the most important markets, which is influenced by several factors. Thus, accurate and reliable techniques are necessary to help investors and consumers find detailed and exact ways to predict the stock market.Propósito – Este estudio tiene como objetivo utilizar modelos grises para predecir rendimientos anormales de acciones. Diseño / metodología / enfoque – Los datos se recopilan de empresas que cotizan en la Bolsa de Valores de Teherán durante 2005-2015. Los análisis muestran tres modelos, a saber, el modelo gris, el modelo Bernoulli gris no lineal y el modelo Bernoulli gris no lineal de Nash. Recomendaciones – Los resultados muestran que el modelo de Bernoulli gris no lineal de Nash puede predecir rendimientos de acciones anormales que se definen por condiciones distintas de los modelos grises que predicen aumentos, y luego, después de verificar los modelos de regresión, se define el modelo de regresión de Bernoulli, que proporciona una mayor precisión y menos errores que el modelo de regresión de Bernoulli. otros dos modelos. Originalidad / valor – El mercado de valores es uno de los mercados más importantes, en el que influyen varios factores. Por lo tanto, se necesitan técnicas precisas y confiables para ayudar a los inversores y consumidores a encontrar formas detalladas y exactas de predecir el mercado de valores.InglésengUniversidad ESAN. ESAN EdicionesPEurn:issn:2218-0648https://revistas.esan.edu.pe/index.php/jefas/article/view/114/90Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccessAbnormal returnsGray theoryNash nonlinear gray Bernoulli modelNonlinear gray Bernoulli modelRendimientos anormalesTeoría de GrayModelo Bernoulli gris no lineal de NashModelo Bernoulli gris no linealhttps://purl.org/pe-repo/ocde/ford#5.02.04Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli modelinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANJournal of Economics, Finance and Administrative Science112449523Acceso abiertoTHUMBNAIL44.jpg44.jpgimage/jpeg64641https://repositorio.esan.edu.pe/bitstreams/44830b44-7095-4da6-bb06-6e821ab4fed6/download0b3b58918313ec1b34477bb4ff530e80MD51falseAnonymousREADJEFAS-44-2018-95-112.pdf.jpgJEFAS-44-2018-95-112.pdf.jpgGenerated Thumbnailimage/jpeg5787https://repositorio.esan.edu.pe/bitstreams/da4816ce-959e-4923-a893-591bd4303961/downloadc04eb7278984cc9084140d0f3b8aae6cMD54falseAnonymousREADORIGINALJEFAS-44-2018-95-112.pdfTexto completoapplication/pdf167306https://repositorio.esan.edu.pe/bitstreams/109be320-88b1-4874-ab8a-e219f544e3e4/downloadf518dfea8f2b5eb33d8fcb83e4b33cfaMD52trueAnonymousREADTEXTJEFAS-44-2018-95-112.pdf.txtJEFAS-44-2018-95-112.pdf.txtExtracted texttext/plain49585https://repositorio.esan.edu.pe/bitstreams/173f79bd-9664-451c-864f-d274a90bd2e0/download016c0aeb6f871e875e93c80cd986876aMD53falseAnonymousREAD20.500.12640/2590oai:repositorio.esan.edu.pe:20.500.12640/25902025-04-17 14:20:17.365open.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe |
score |
13.94832 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).