Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model

Descripción del Articulo

Purpose – This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach – Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the...

Descripción completa

Detalles Bibliográficos
Autores: Doryab, Bahar, Salehi, Mahdi
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/2590
Enlace del recurso:https://revistas.esan.edu.pe/index.php/jefas/article/view/114
https://hdl.handle.net/20.500.12640/2590
https://doi.org/10.1108/JEFAS-06-2017-0075
Nivel de acceso:acceso abierto
Materia:Abnormal returns
Gray theory
Nash nonlinear gray Bernoulli model
Nonlinear gray Bernoulli model
Rendimientos anormales
Teoría de Gray
Modelo Bernoulli gris no lineal de Nash
Modelo Bernoulli gris no lineal
https://purl.org/pe-repo/ocde/ford#5.02.04
id ESAN_3952f3a004c50e42b1248cd68880be46
oai_identifier_str oai:repositorio.esan.edu.pe:20.500.12640/2590
network_acronym_str ESAN
network_name_str ESAN-Institucional
repository_id_str 4835
dc.title.en_EN.fl_str_mv Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
title Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
spellingShingle Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
Doryab, Bahar
Abnormal returns
Gray theory
Nash nonlinear gray Bernoulli model
Nonlinear gray Bernoulli model
Rendimientos anormales
Teoría de Gray
Modelo Bernoulli gris no lineal de Nash
Modelo Bernoulli gris no lineal
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
title_full Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
title_fullStr Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
title_full_unstemmed Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
title_sort Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model
author Doryab, Bahar
author_facet Doryab, Bahar
Salehi, Mahdi
author_role author
author2 Salehi, Mahdi
author2_role author
dc.contributor.author.fl_str_mv Doryab, Bahar
Salehi, Mahdi
dc.subject.en_EN.fl_str_mv Abnormal returns
Gray theory
Nash nonlinear gray Bernoulli model
Nonlinear gray Bernoulli model
topic Abnormal returns
Gray theory
Nash nonlinear gray Bernoulli model
Nonlinear gray Bernoulli model
Rendimientos anormales
Teoría de Gray
Modelo Bernoulli gris no lineal de Nash
Modelo Bernoulli gris no lineal
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.es_ES.fl_str_mv Rendimientos anormales
Teoría de Gray
Modelo Bernoulli gris no lineal de Nash
Modelo Bernoulli gris no lineal
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description Purpose – This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach – Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the Nash nonlinear gray Bernoulli model. Findings – Results show that the Nash nonlinear gray Bernoulli model can predict abnormal stock returns that are defined by conditions other than gray models which predict increases, and then after checking regression models, the Bernoulli regression model is defined, which gives higher accuracy and fewer errors than the other two models. Originality/value – The stock market is one of the most important markets, which is influenced by several factors. Thus, accurate and reliable techniques are necessary to help investors and consumers find detailed and exact ways to predict the stock market.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2021-10-30T01:52:36Z
dc.date.available.none.fl_str_mv 2021-10-30T01:52:36Z
dc.date.issued.fl_str_mv 2018-06-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.other.none.fl_str_mv Artículo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/114
dc.identifier.citation.none.fl_str_mv Doryab, B., & Salehi, M. (2018). Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model. Journal of Economics, Finance and Administrative Science, 23(44), 95-112. https://doi.org/10.1108/JEFAS-06-2017-0075
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12640/2590
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1108/JEFAS-06-2017-0075
url https://revistas.esan.edu.pe/index.php/jefas/article/view/114
https://hdl.handle.net/20.500.12640/2590
https://doi.org/10.1108/JEFAS-06-2017-0075
identifier_str_mv Doryab, B., & Salehi, M. (2018). Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model. Journal of Economics, Finance and Administrative Science, 23(44), 95-112. https://doi.org/10.1108/JEFAS-06-2017-0075
dc.language.none.fl_str_mv Inglés
dc.language.iso.none.fl_str_mv eng
language_invalid_str_mv Inglés
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2218-0648
dc.relation.uri.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/114/90
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.source.none.fl_str_mv reponame:ESAN-Institucional
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str ESAN-Institucional
collection ESAN-Institucional
bitstream.url.fl_str_mv https://repositorio.esan.edu.pe/bitstreams/44830b44-7095-4da6-bb06-6e821ab4fed6/download
https://repositorio.esan.edu.pe/bitstreams/da4816ce-959e-4923-a893-591bd4303961/download
https://repositorio.esan.edu.pe/bitstreams/109be320-88b1-4874-ab8a-e219f544e3e4/download
https://repositorio.esan.edu.pe/bitstreams/173f79bd-9664-451c-864f-d274a90bd2e0/download
bitstream.checksum.fl_str_mv 0b3b58918313ec1b34477bb4ff530e80
c04eb7278984cc9084140d0f3b8aae6c
f518dfea8f2b5eb33d8fcb83e4b33cfa
016c0aeb6f871e875e93c80cd986876a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional ESAN
repository.mail.fl_str_mv repositorio@esan.edu.pe
_version_ 1835651550035312640
spelling Doryab, BaharSalehi, Mahdi2021-10-30T01:52:36Z2021-10-30T01:52:36Z2018-06-01https://revistas.esan.edu.pe/index.php/jefas/article/view/114Doryab, B., & Salehi, M. (2018). Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model. Journal of Economics, Finance and Administrative Science, 23(44), 95-112. https://doi.org/10.1108/JEFAS-06-2017-0075https://hdl.handle.net/20.500.12640/2590https://doi.org/10.1108/JEFAS-06-2017-0075Purpose – This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach – Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the Nash nonlinear gray Bernoulli model. Findings – Results show that the Nash nonlinear gray Bernoulli model can predict abnormal stock returns that are defined by conditions other than gray models which predict increases, and then after checking regression models, the Bernoulli regression model is defined, which gives higher accuracy and fewer errors than the other two models. Originality/value – The stock market is one of the most important markets, which is influenced by several factors. Thus, accurate and reliable techniques are necessary to help investors and consumers find detailed and exact ways to predict the stock market.Propósito – Este estudio tiene como objetivo utilizar modelos grises para predecir rendimientos anormales de acciones. Diseño / metodología / enfoque – Los datos se recopilan de empresas que cotizan en la Bolsa de Valores de Teherán durante 2005-2015. Los análisis muestran tres modelos, a saber, el modelo gris, el modelo Bernoulli gris no lineal y el modelo Bernoulli gris no lineal de Nash. Recomendaciones – Los resultados muestran que el modelo de Bernoulli gris no lineal de Nash puede predecir rendimientos de acciones anormales que se definen por condiciones distintas de los modelos grises que predicen aumentos, y luego, después de verificar los modelos de regresión, se define el modelo de regresión de Bernoulli, que proporciona una mayor precisión y menos errores que el modelo de regresión de Bernoulli. otros dos modelos. Originalidad / valor – El mercado de valores es uno de los mercados más importantes, en el que influyen varios factores. Por lo tanto, se necesitan técnicas precisas y confiables para ayudar a los inversores y consumidores a encontrar formas detalladas y exactas de predecir el mercado de valores.InglésengUniversidad ESAN. ESAN EdicionesPEurn:issn:2218-0648https://revistas.esan.edu.pe/index.php/jefas/article/view/114/90Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccessAbnormal returnsGray theoryNash nonlinear gray Bernoulli modelNonlinear gray Bernoulli modelRendimientos anormalesTeoría de GrayModelo Bernoulli gris no lineal de NashModelo Bernoulli gris no linealhttps://purl.org/pe-repo/ocde/ford#5.02.04Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli modelinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANJournal of Economics, Finance and Administrative Science112449523Acceso abiertoTHUMBNAIL44.jpg44.jpgimage/jpeg64641https://repositorio.esan.edu.pe/bitstreams/44830b44-7095-4da6-bb06-6e821ab4fed6/download0b3b58918313ec1b34477bb4ff530e80MD51falseAnonymousREADJEFAS-44-2018-95-112.pdf.jpgJEFAS-44-2018-95-112.pdf.jpgGenerated Thumbnailimage/jpeg5787https://repositorio.esan.edu.pe/bitstreams/da4816ce-959e-4923-a893-591bd4303961/downloadc04eb7278984cc9084140d0f3b8aae6cMD54falseAnonymousREADORIGINALJEFAS-44-2018-95-112.pdfTexto completoapplication/pdf167306https://repositorio.esan.edu.pe/bitstreams/109be320-88b1-4874-ab8a-e219f544e3e4/downloadf518dfea8f2b5eb33d8fcb83e4b33cfaMD52trueAnonymousREADTEXTJEFAS-44-2018-95-112.pdf.txtJEFAS-44-2018-95-112.pdf.txtExtracted texttext/plain49585https://repositorio.esan.edu.pe/bitstreams/173f79bd-9664-451c-864f-d274a90bd2e0/download016c0aeb6f871e875e93c80cd986876aMD53falseAnonymousREAD20.500.12640/2590oai:repositorio.esan.edu.pe:20.500.12640/25902025-04-17 14:20:17.365open.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe
score 13.94832
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).