Modeling and forecasting abnormal stock returns using the nonlinear Grey Bernoulli model

Descripción del Articulo

Purpose – This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach – Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the...

Descripción completa

Detalles Bibliográficos
Autores: Doryab, Bahar, Salehi, Mahdi
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/2590
Enlace del recurso:https://revistas.esan.edu.pe/index.php/jefas/article/view/114
https://hdl.handle.net/20.500.12640/2590
https://doi.org/10.1108/JEFAS-06-2017-0075
Nivel de acceso:acceso abierto
Materia:Abnormal returns
Gray theory
Nash nonlinear gray Bernoulli model
Nonlinear gray Bernoulli model
Rendimientos anormales
Teoría de Gray
Modelo Bernoulli gris no lineal de Nash
Modelo Bernoulli gris no lineal
https://purl.org/pe-repo/ocde/ford#5.02.04
Descripción
Sumario:Purpose – This study aims to use gray models to predict abnormal stock returns. Design/methodology/approach – Data are collected from listed companies in the Tehran Stock Exchange during 2005-2015. The analyses portray three models, namely, the gray model, the nonlinear gray Bernoulli model and the Nash nonlinear gray Bernoulli model. Findings – Results show that the Nash nonlinear gray Bernoulli model can predict abnormal stock returns that are defined by conditions other than gray models which predict increases, and then after checking regression models, the Bernoulli regression model is defined, which gives higher accuracy and fewer errors than the other two models. Originality/value – The stock market is one of the most important markets, which is influenced by several factors. Thus, accurate and reliable techniques are necessary to help investors and consumers find detailed and exact ways to predict the stock market.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).