Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data

Descripción del Articulo

MINERvA is supported by the Fermi National Accelerator Laboratory under US Department of Energy contract No. DE-AC02-07CH11359 which included the MINERvA construction project. MINERvA construction support was also granted by the United States National Science Foundation under Award PHY-0619727 and b...

Descripción completa

Detalles Bibliográficos
Autores: Song, LH, Chen, F, Young, SR, Schuman, CD, Perdue, G, Potok, TE
Formato: objeto de conferencia
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1189
Enlace del recurso:https://hdl.handle.net/20.500.12390/1189
https://doi.org/10.1109/ICASSP.2019.8683736
Nivel de acceso:acceso abierto
Materia:Física de partículas
https://purl.org/pe-repo/ocde/ford#1.03.03
id CONC_fda2fd2bfe7794e628aa97ac9bf864e6
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1189
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data
title Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data
spellingShingle Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data
Song, LH
Física de partículas
https://purl.org/pe-repo/ocde/ford#1.03.03
title_short Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data
title_full Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data
title_fullStr Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data
title_full_unstemmed Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data
title_sort Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data
author Song, LH
author_facet Song, LH
Chen, F
Young, SR
Schuman, CD
Perdue, G
Potok, TE
author_role author
author2 Chen, F
Young, SR
Schuman, CD
Perdue, G
Potok, TE
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Song, LH
Chen, F
Young, SR
Schuman, CD
Perdue, G
Potok, TE
dc.subject.none.fl_str_mv Física de partículas
topic Física de partículas
https://purl.org/pe-repo/ocde/ford#1.03.03
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.03.03
description MINERvA is supported by the Fermi National Accelerator Laboratory under US Department of Energy contract No. DE-AC02-07CH11359 which included the MINERvA construction project. MINERvA construction support was also granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Support for participating MINERvA physicists was provided by NSF and DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGIUNI (Peru), and by Latin American Center for Physics (CLAF). This research was supported in part by an appointment to the Oak Ridge National Laboratory ASTRO Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1189
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/ICASSP.2019.8683736
dc.identifier.isi.none.fl_str_mv 482554004024
url https://hdl.handle.net/20.500.12390/1189
https://doi.org/10.1109/ICASSP.2019.8683736
identifier_str_mv 482554004024
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883093306998784
spelling Publicationrp03402600rp03401600rp02098500rp01262500rp00806500rp01263500Song, LHChen, FYoung, SRSchuman, CDPerdue, GPotok, TE2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/1189https://doi.org/10.1109/ICASSP.2019.8683736482554004024MINERvA is supported by the Fermi National Accelerator Laboratory under US Department of Energy contract No. DE-AC02-07CH11359 which included the MINERvA construction project. MINERvA construction support was also granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Support for participating MINERvA physicists was provided by NSF and DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGIUNI (Peru), and by Latin American Center for Physics (CLAF). This research was supported in part by an appointment to the Oak Ridge National Laboratory ASTRO Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education.Se presentó un enfoque de aprendizaje profundo para la reconstrucción de vértices de eventos de interacción neutrino-núcleo, un problema en el dominio de la física de alta energía. En este enfoque, combina datos de energía y tiempo que se recopilan en el detector MIN-ERvA para realizar tareas de clasificación y regresión. Demostramos que la red resultante logra una mayor precisión que los resultados anteriores, mientras que requiere un tamaño de modelo más pequeño y menos tiempo de entrenamiento. En particular, el modelo propuesto supera el estado de la técnica en un 4,00% en precisión de clasificación.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineersinfo:eu-repo/semantics/openAccessFísica de partículashttps://purl.org/pe-repo/ocde/ford#1.03.03-1Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time datainfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1189oai:repositorio.concytec.gob.pe:20.500.12390/11892024-05-30 16:01:40.622http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="4c7853d7-66d5-4c54-8276-87bce6d4d54c"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1109/ICASSP.2019.8683736</DOI> <ISI-Number>482554004024</ISI-Number> <Authors> <Author> <DisplayName>Song, LH</DisplayName> <Person id="rp03402" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Chen, F</DisplayName> <Person id="rp03401" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Young, SR</DisplayName> <Person id="rp02098" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Schuman, CD</DisplayName> <Person id="rp01262" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Perdue, G</DisplayName> <Person id="rp00806" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Potok, TE</DisplayName> <Person id="rp01263" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Física de partículas</Keyword> <Abstract>Se presentó un enfoque de aprendizaje profundo para la reconstrucción de vértices de eventos de interacción neutrino-núcleo, un problema en el dominio de la física de alta energía. En este enfoque, combina datos de energía y tiempo que se recopilan en el detector MIN-ERvA para realizar tareas de clasificación y regresión. Demostramos que la red resultante logra una mayor precisión que los resultados anteriores, mientras que requiere un tamaño de modelo más pequeño y menos tiempo de entrenamiento. En particular, el modelo propuesto supera el estado de la técnica en un 4,00% en precisión de clasificación.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.302918
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).