1
objeto de conferencia
Publicado 2019
Enlace

MINERvA is supported by the Fermi National Accelerator Laboratory under US Department of Energy contract No. DE-AC02-07CH11359 which included the MINERvA construction project. MINERvA construction support was also granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Support for participating MINERvA physicists was provided by NSF and DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGIUNI (Peru), and by Latin American Center for Physics (CLAF). This research was supported in part by an appointment to the Oak Ridge National Laboratory ASTRO Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education.
2
objeto de conferencia
Deep learning offers new tools to improve our understanding of many important scientific problems. Neutrinos are the most abundant particles in existence and are hypothesized to explain the matter-antimatter asymmetry that dominates our universe. Definitive tests of this conjecture require a detailed understanding of neutrino interactions with a variety of nuclei. Many measurements of interest depend on vertex reconstruction – finding the origin of a neutrino interaction using data from the detector, which can be represented as images. Traditionally, this has been accomplished by utilizing methods that identify the tracks coming from the interaction. However, these methods are not ideal for interactions where an abundance of tracks and cascades occlude the vertex region. Manual algorithm engineering to handle these challenges is complicated and error prone. Deep learning extracts rich,...