Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method

Descripción del Articulo

Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the ℓ∞,1 ball, which has found application in cognitive neu...

Descripción completa

Detalles Bibliográficos
Autores: Chau, Gustavo, Wohlberg, Brendt, Rodriguez, Paul
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1281
Enlace del recurso:https://hdl.handle.net/20.500.12390/1281
https://doi.org/10.1137/18m1212525
Nivel de acceso:acceso abierto
Materia:regularización de la proyección
Normas mixtas
espaciosidad estructurada
encontrar la raíz
https://purl.org/pe-repo/ocde/ford#1.01.02
id CONC_fcba30891121bc2f15af72b7ffc5e906
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1281
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method
title Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method
spellingShingle Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method
Chau, Gustavo
regularización de la proyección
Normas mixtas
espaciosidad estructurada
encontrar la raíz
encontrar la raíz
https://purl.org/pe-repo/ocde/ford#1.01.02
title_short Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method
title_full Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method
title_fullStr Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method
title_full_unstemmed Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method
title_sort Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method
author Chau, Gustavo
author_facet Chau, Gustavo
Wohlberg, Brendt
Rodriguez, Paul
author_role author
author2 Wohlberg, Brendt
Rodriguez, Paul
author2_role author
author
dc.contributor.author.fl_str_mv Chau, Gustavo
Wohlberg, Brendt
Rodriguez, Paul
dc.subject.none.fl_str_mv regularización de la proyección
topic regularización de la proyección
Normas mixtas
espaciosidad estructurada
encontrar la raíz
encontrar la raíz
https://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.es_PE.fl_str_mv Normas mixtas
espaciosidad estructurada
encontrar la raíz
encontrar la raíz
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.02
description Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the ℓ∞,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1281
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1137/18m1212525
url https://hdl.handle.net/20.500.12390/1281
https://doi.org/10.1137/18m1212525
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv SIAM Journal on Imaging Sciences
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Society for Industrial & Applied Mathematics (SIAM)
publisher.none.fl_str_mv Society for Industrial & Applied Mathematics (SIAM)
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1854395723518312448
spelling Publicationrp03722600rp03721600rp03723600Chau, GustavoWohlberg, BrendtRodriguez, Paul2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019-01https://hdl.handle.net/20.500.12390/1281https://doi.org/10.1137/18m1212525Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the ℓ∞,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementationConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSociety for Industrial & Applied Mathematics (SIAM)SIAM Journal on Imaging Sciencesinfo:eu-repo/semantics/openAccessregularización de la proyecciónNormas mixtas-1espaciosidad estructurada-1encontrar la raíz-1encontrar la raíz-1https://purl.org/pe-repo/ocde/ford#1.01.02-1Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Methodinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1281oai:repositorio.concytec.gob.pe:20.500.12390/12812024-05-30 16:02:16.718http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="31220c46-2e9a-4c18-bc52-d81ec2e66c85"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method</Title> <PublishedIn> <Publication> <Title>SIAM Journal on Imaging Sciences</Title> </Publication> </PublishedIn> <PublicationDate>2019-01</PublicationDate> <DOI>https://doi.org/10.1137/18m1212525</DOI> <Authors> <Author> <DisplayName>Chau, Gustavo</DisplayName> <Person id="rp03722" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Wohlberg, Brendt</DisplayName> <Person id="rp03721" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rodriguez, Paul</DisplayName> <Person id="rp03723" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Society for Industrial &amp; Applied Mathematics (SIAM)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>regularización de la proyección</Keyword> <Keyword>Normas mixtas</Keyword> <Keyword>espaciosidad estructurada</Keyword> <Keyword>encontrar la raíz</Keyword> <Keyword>encontrar la raíz</Keyword> <Abstract>Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the ℓ∞,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.922529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).