Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method
Descripción del Articulo
Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the ℓ∞,1 ball, which has found application in cognitive neu...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2019 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1281 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/1281 https://doi.org/10.1137/18m1212525 |
| Nivel de acceso: | acceso abierto |
| Materia: | regularización de la proyección Normas mixtas espaciosidad estructurada encontrar la raíz https://purl.org/pe-repo/ocde/ford#1.01.02 |
| id |
CONC_fcba30891121bc2f15af72b7ffc5e906 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1281 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method |
| title |
Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method |
| spellingShingle |
Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method Chau, Gustavo regularización de la proyección Normas mixtas espaciosidad estructurada encontrar la raíz encontrar la raíz https://purl.org/pe-repo/ocde/ford#1.01.02 |
| title_short |
Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method |
| title_full |
Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method |
| title_fullStr |
Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method |
| title_full_unstemmed |
Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method |
| title_sort |
Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method |
| author |
Chau, Gustavo |
| author_facet |
Chau, Gustavo Wohlberg, Brendt Rodriguez, Paul |
| author_role |
author |
| author2 |
Wohlberg, Brendt Rodriguez, Paul |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Chau, Gustavo Wohlberg, Brendt Rodriguez, Paul |
| dc.subject.none.fl_str_mv |
regularización de la proyección |
| topic |
regularización de la proyección Normas mixtas espaciosidad estructurada encontrar la raíz encontrar la raíz https://purl.org/pe-repo/ocde/ford#1.01.02 |
| dc.subject.es_PE.fl_str_mv |
Normas mixtas espaciosidad estructurada encontrar la raíz encontrar la raíz |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.02 |
| description |
Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the ℓ∞,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation |
| publishDate |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2019-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1281 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1137/18m1212525 |
| url |
https://hdl.handle.net/20.500.12390/1281 https://doi.org/10.1137/18m1212525 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
SIAM Journal on Imaging Sciences |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Society for Industrial & Applied Mathematics (SIAM) |
| publisher.none.fl_str_mv |
Society for Industrial & Applied Mathematics (SIAM) |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1854395723518312448 |
| spelling |
Publicationrp03722600rp03721600rp03723600Chau, GustavoWohlberg, BrendtRodriguez, Paul2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019-01https://hdl.handle.net/20.500.12390/1281https://doi.org/10.1137/18m1212525Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the ℓ∞,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementationConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSociety for Industrial & Applied Mathematics (SIAM)SIAM Journal on Imaging Sciencesinfo:eu-repo/semantics/openAccessregularización de la proyecciónNormas mixtas-1espaciosidad estructurada-1encontrar la raíz-1encontrar la raíz-1https://purl.org/pe-repo/ocde/ford#1.01.02-1Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Methodinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1281oai:repositorio.concytec.gob.pe:20.500.12390/12812024-05-30 16:02:16.718http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="31220c46-2e9a-4c18-bc52-d81ec2e66c85"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method</Title> <PublishedIn> <Publication> <Title>SIAM Journal on Imaging Sciences</Title> </Publication> </PublishedIn> <PublicationDate>2019-01</PublicationDate> <DOI>https://doi.org/10.1137/18m1212525</DOI> <Authors> <Author> <DisplayName>Chau, Gustavo</DisplayName> <Person id="rp03722" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Wohlberg, Brendt</DisplayName> <Person id="rp03721" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rodriguez, Paul</DisplayName> <Person id="rp03723" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Society for Industrial & Applied Mathematics (SIAM)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>regularización de la proyección</Keyword> <Keyword>Normas mixtas</Keyword> <Keyword>espaciosidad estructurada</Keyword> <Keyword>encontrar la raíz</Keyword> <Keyword>encontrar la raíz</Keyword> <Abstract>Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the ℓ∞,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.922529 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).