Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method

Descripción del Articulo

Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the ℓ∞,1 ball, which has found application in cognitive neu...

Descripción completa

Detalles Bibliográficos
Autores: Chau, Gustavo, Wohlberg, Brendt, Rodriguez, Paul
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1281
Enlace del recurso:https://hdl.handle.net/20.500.12390/1281
https://doi.org/10.1137/18m1212525
Nivel de acceso:acceso abierto
Materia:regularización de la proyección
Normas mixtas
espaciosidad estructurada
encontrar la raíz
https://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the ℓ∞,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).