A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity

Descripción del Articulo

The present study proposes a method of automatic detection of tuberculosis (TB) bacilli from digital images of Ziehl Neelsen sputum smear baciloscopy. The method is based on an algorithm that aims to automate the interpretation of optical microscopic images of sputum smears. According to the World H...

Descripción completa

Detalles Bibliográficos
Autores: Del Carpio C., Dianderas E., Zimick M., Sheen P., Coronel J., Fuentes P., Kemper G.
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/484
Enlace del recurso:https://hdl.handle.net/20.500.12390/484
Nivel de acceso:acceso abierto
Materia:Ziehl-neelsen
Algorithms
Bacilli
Bacteriology
Cybernetics
Diagnosis
Geometry
Image enhancement
Image processing
Optical data processing
Plasma diagnostics
Sensitivity analysis
Baciloscopy
Digital image
Sputum smear
id CONC_fc365feacbec4f80f3814966e071c361
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/484
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity
title A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity
spellingShingle A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity
Del Carpio C.
Ziehl-neelsen
Algorithms
Bacilli
Bacteriology
Cybernetics
Cybernetics
Diagnosis
Geometry
Image enhancement
Image enhancement
Image processing
Optical data processing
Plasma diagnostics
Sensitivity analysis
Baciloscopy
Digital image
Sputum smear
title_short A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity
title_full A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity
title_fullStr A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity
title_full_unstemmed A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity
title_sort A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity
author Del Carpio C.
author_facet Del Carpio C.
Dianderas E.
Zimick M.
Sheen P.
Coronel J.
Fuentes P.
Kemper G.
author_role author
author2 Dianderas E.
Zimick M.
Sheen P.
Coronel J.
Fuentes P.
Kemper G.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Del Carpio C.
Dianderas E.
Zimick M.
Sheen P.
Coronel J.
Fuentes P.
Kemper G.
dc.subject.none.fl_str_mv Ziehl-neelsen
topic Ziehl-neelsen
Algorithms
Bacilli
Bacteriology
Cybernetics
Cybernetics
Diagnosis
Geometry
Image enhancement
Image enhancement
Image processing
Optical data processing
Plasma diagnostics
Sensitivity analysis
Baciloscopy
Digital image
Sputum smear
dc.subject.es_PE.fl_str_mv Algorithms
Bacilli
Bacteriology
Cybernetics
Cybernetics
Diagnosis
Geometry
Image enhancement
Image enhancement
Image processing
Optical data processing
Plasma diagnostics
Sensitivity analysis
Baciloscopy
Digital image
Sputum smear
description The present study proposes a method of automatic detection of tuberculosis (TB) bacilli from digital images of Ziehl Neelsen sputum smear baciloscopy. The method is based on an algorithm that aims to automate the interpretation of optical microscopic images of sputum smears. According to the World Health Organization (WHO), a specialist can not analyze and process more than 20 samples per day (in order to not affect the analysis sensitivity and commit errors in diagnosis). Therefore, an automated tool as the proposed here, is an important contribution to the current efforts to fight tuberculosis. The algorithm is based on geometric eccentricity of ellipses and improvement of RGB component tones. Correspondence functions adjusted to sample preparation conditions were applied in order to improve the RGB primary component tones of the image. This allows to obtain an adequate segmentation of interest objects. For the recognition of each object as bacillus, the geometric descriptor of eccentricity of the ellipse was applied. The algorithm was validated with 66 independent sputum samples from TB patients. A sensitivity of 88.75% and a specificity of 95.5% was obtained for the diluted pellet method for sample preparation. © by the International Institute of Informatics and Systemics.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.isbn.none.fl_str_mv urn:isbn:9781941763599
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/484
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85032367882
identifier_str_mv urn:isbn:9781941763599
2-s2.0-85032367882
url https://hdl.handle.net/20.500.12390/484
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv WMSCI 2017 - 21st World Multi-Conference on Systemics, Cybernetics and Informatics, Proceedings
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.publisher.none.fl_str_mv International Institute of Informatics and Systemics, IIIS
publisher.none.fl_str_mv International Institute of Informatics and Systemics, IIIS
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883071767150592
spelling Publicationrp00528600rp00524600rp00522600rp00526600rp00523600rp00525600rp00527600Del Carpio C.Dianderas E.Zimick M.Sheen P.Coronel J.Fuentes P.Kemper G.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017urn:isbn:9781941763599https://hdl.handle.net/20.500.12390/4842-s2.0-85032367882The present study proposes a method of automatic detection of tuberculosis (TB) bacilli from digital images of Ziehl Neelsen sputum smear baciloscopy. The method is based on an algorithm that aims to automate the interpretation of optical microscopic images of sputum smears. According to the World Health Organization (WHO), a specialist can not analyze and process more than 20 samples per day (in order to not affect the analysis sensitivity and commit errors in diagnosis). Therefore, an automated tool as the proposed here, is an important contribution to the current efforts to fight tuberculosis. The algorithm is based on geometric eccentricity of ellipses and improvement of RGB component tones. Correspondence functions adjusted to sample preparation conditions were applied in order to improve the RGB primary component tones of the image. This allows to obtain an adequate segmentation of interest objects. For the recognition of each object as bacillus, the geometric descriptor of eccentricity of the ellipse was applied. The algorithm was validated with 66 independent sputum samples from TB patients. A sensitivity of 88.75% and a specificity of 95.5% was obtained for the diluted pellet method for sample preparation. © by the International Institute of Informatics and Systemics.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInternational Institute of Informatics and Systemics, IIISWMSCI 2017 - 21st World Multi-Conference on Systemics, Cybernetics and Informatics, Proceedingsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Ziehl-neelsenAlgorithms-1Bacilli-1Bacteriology-1Cybernetics-1Cybernetics-1Diagnosis-1Geometry-1Image enhancement-1Image enhancement-1Image processing-1Optical data processing-1Plasma diagnostics-1Sensitivity analysis-1Baciloscopy-1Digital image-1Sputum smear-1A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricityinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/484oai:repositorio.concytec.gob.pe:20.500.12390/4842025-09-23 15:23:25.785https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2f70afdb-6ff0-4a39-86e2-31015fc95c10"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity</Title> <PublishedIn> <Publication> <Title>WMSCI 2017 - 21st World Multi-Conference on Systemics, Cybernetics and Informatics, Proceedings</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <SCP-Number>2-s2.0-85032367882</SCP-Number> <ISBN>urn:isbn:9781941763599</ISBN> <Authors> <Author> <DisplayName>Del Carpio C.</DisplayName> <Person id="rp00528" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Dianderas E.</DisplayName> <Person id="rp00524" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Zimick M.</DisplayName> <Person id="rp00522" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sheen P.</DisplayName> <Person id="rp00526" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Coronel J.</DisplayName> <Person id="rp00523" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Fuentes P.</DisplayName> <Person id="rp00525" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kemper G.</DisplayName> <Person id="rp00527" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>International Institute of Informatics and Systemics, IIIS</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Ziehl-neelsen</Keyword> <Keyword>Algorithms</Keyword> <Keyword>Bacilli</Keyword> <Keyword>Bacteriology</Keyword> <Keyword>Cybernetics</Keyword> <Keyword>Cybernetics</Keyword> <Keyword>Diagnosis</Keyword> <Keyword>Geometry</Keyword> <Keyword>Image enhancement</Keyword> <Keyword>Image enhancement</Keyword> <Keyword>Image processing</Keyword> <Keyword>Optical data processing</Keyword> <Keyword>Plasma diagnostics</Keyword> <Keyword>Sensitivity analysis</Keyword> <Keyword>Baciloscopy</Keyword> <Keyword>Digital image</Keyword> <Keyword>Sputum smear</Keyword> <Abstract>The present study proposes a method of automatic detection of tuberculosis (TB) bacilli from digital images of Ziehl Neelsen sputum smear baciloscopy. The method is based on an algorithm that aims to automate the interpretation of optical microscopic images of sputum smears. According to the World Health Organization (WHO), a specialist can not analyze and process more than 20 samples per day (in order to not affect the analysis sensitivity and commit errors in diagnosis). Therefore, an automated tool as the proposed here, is an important contribution to the current efforts to fight tuberculosis. The algorithm is based on geometric eccentricity of ellipses and improvement of RGB component tones. Correspondence functions adjusted to sample preparation conditions were applied in order to improve the RGB primary component tones of the image. This allows to obtain an adequate segmentation of interest objects. For the recognition of each object as bacillus, the geometric descriptor of eccentricity of the ellipse was applied. The algorithm was validated with 66 independent sputum samples from TB patients. A sensitivity of 88.75% and a specificity of 95.5% was obtained for the diluted pellet method for sample preparation. © by the International Institute of Informatics and Systemics.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).