A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity
Descripción del Articulo
The present study proposes a method of automatic detection of tuberculosis (TB) bacilli from digital images of Ziehl Neelsen sputum smear baciloscopy. The method is based on an algorithm that aims to automate the interpretation of optical microscopic images of sputum smears. According to the World H...
| Autores: | , , , , , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2017 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/484 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/484 |
| Nivel de acceso: | acceso abierto |
| Materia: | Ziehl-neelsen Algorithms Bacilli Bacteriology Cybernetics Diagnosis Geometry Image enhancement Image processing Optical data processing Plasma diagnostics Sensitivity analysis Baciloscopy Digital image Sputum smear |
| id |
CONC_fc365feacbec4f80f3814966e071c361 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/484 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity |
| title |
A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity |
| spellingShingle |
A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity Del Carpio C. Ziehl-neelsen Algorithms Bacilli Bacteriology Cybernetics Cybernetics Diagnosis Geometry Image enhancement Image enhancement Image processing Optical data processing Plasma diagnostics Sensitivity analysis Baciloscopy Digital image Sputum smear |
| title_short |
A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity |
| title_full |
A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity |
| title_fullStr |
A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity |
| title_full_unstemmed |
A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity |
| title_sort |
A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity |
| author |
Del Carpio C. |
| author_facet |
Del Carpio C. Dianderas E. Zimick M. Sheen P. Coronel J. Fuentes P. Kemper G. |
| author_role |
author |
| author2 |
Dianderas E. Zimick M. Sheen P. Coronel J. Fuentes P. Kemper G. |
| author2_role |
author author author author author author |
| dc.contributor.author.fl_str_mv |
Del Carpio C. Dianderas E. Zimick M. Sheen P. Coronel J. Fuentes P. Kemper G. |
| dc.subject.none.fl_str_mv |
Ziehl-neelsen |
| topic |
Ziehl-neelsen Algorithms Bacilli Bacteriology Cybernetics Cybernetics Diagnosis Geometry Image enhancement Image enhancement Image processing Optical data processing Plasma diagnostics Sensitivity analysis Baciloscopy Digital image Sputum smear |
| dc.subject.es_PE.fl_str_mv |
Algorithms Bacilli Bacteriology Cybernetics Cybernetics Diagnosis Geometry Image enhancement Image enhancement Image processing Optical data processing Plasma diagnostics Sensitivity analysis Baciloscopy Digital image Sputum smear |
| description |
The present study proposes a method of automatic detection of tuberculosis (TB) bacilli from digital images of Ziehl Neelsen sputum smear baciloscopy. The method is based on an algorithm that aims to automate the interpretation of optical microscopic images of sputum smears. According to the World Health Organization (WHO), a specialist can not analyze and process more than 20 samples per day (in order to not affect the analysis sensitivity and commit errors in diagnosis). Therefore, an automated tool as the proposed here, is an important contribution to the current efforts to fight tuberculosis. The algorithm is based on geometric eccentricity of ellipses and improvement of RGB component tones. Correspondence functions adjusted to sample preparation conditions were applied in order to improve the RGB primary component tones of the image. This allows to obtain an adequate segmentation of interest objects. For the recognition of each object as bacillus, the geometric descriptor of eccentricity of the ellipse was applied. The algorithm was validated with 66 independent sputum samples from TB patients. A sensitivity of 88.75% and a specificity of 95.5% was obtained for the diluted pellet method for sample preparation. © by the International Institute of Informatics and Systemics. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2017 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.isbn.none.fl_str_mv |
urn:isbn:9781941763599 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/484 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85032367882 |
| identifier_str_mv |
urn:isbn:9781941763599 2-s2.0-85032367882 |
| url |
https://hdl.handle.net/20.500.12390/484 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
WMSCI 2017 - 21st World Multi-Conference on Systemics, Cybernetics and Informatics, Proceedings |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.publisher.none.fl_str_mv |
International Institute of Informatics and Systemics, IIIS |
| publisher.none.fl_str_mv |
International Institute of Informatics and Systemics, IIIS |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883071767150592 |
| spelling |
Publicationrp00528600rp00524600rp00522600rp00526600rp00523600rp00525600rp00527600Del Carpio C.Dianderas E.Zimick M.Sheen P.Coronel J.Fuentes P.Kemper G.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017urn:isbn:9781941763599https://hdl.handle.net/20.500.12390/4842-s2.0-85032367882The present study proposes a method of automatic detection of tuberculosis (TB) bacilli from digital images of Ziehl Neelsen sputum smear baciloscopy. The method is based on an algorithm that aims to automate the interpretation of optical microscopic images of sputum smears. According to the World Health Organization (WHO), a specialist can not analyze and process more than 20 samples per day (in order to not affect the analysis sensitivity and commit errors in diagnosis). Therefore, an automated tool as the proposed here, is an important contribution to the current efforts to fight tuberculosis. The algorithm is based on geometric eccentricity of ellipses and improvement of RGB component tones. Correspondence functions adjusted to sample preparation conditions were applied in order to improve the RGB primary component tones of the image. This allows to obtain an adequate segmentation of interest objects. For the recognition of each object as bacillus, the geometric descriptor of eccentricity of the ellipse was applied. The algorithm was validated with 66 independent sputum samples from TB patients. A sensitivity of 88.75% and a specificity of 95.5% was obtained for the diluted pellet method for sample preparation. © by the International Institute of Informatics and Systemics.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInternational Institute of Informatics and Systemics, IIISWMSCI 2017 - 21st World Multi-Conference on Systemics, Cybernetics and Informatics, Proceedingsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Ziehl-neelsenAlgorithms-1Bacilli-1Bacteriology-1Cybernetics-1Cybernetics-1Diagnosis-1Geometry-1Image enhancement-1Image enhancement-1Image processing-1Optical data processing-1Plasma diagnostics-1Sensitivity analysis-1Baciloscopy-1Digital image-1Sputum smear-1A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricityinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/484oai:repositorio.concytec.gob.pe:20.500.12390/4842025-09-23 15:23:25.785https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2f70afdb-6ff0-4a39-86e2-31015fc95c10"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A computer algorithm for detection of tuberculosis bacilli in Ziehl Nellsen sputum smear images based on the adjustment of RGB primary component tones and geometric eccentricity</Title> <PublishedIn> <Publication> <Title>WMSCI 2017 - 21st World Multi-Conference on Systemics, Cybernetics and Informatics, Proceedings</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <SCP-Number>2-s2.0-85032367882</SCP-Number> <ISBN>urn:isbn:9781941763599</ISBN> <Authors> <Author> <DisplayName>Del Carpio C.</DisplayName> <Person id="rp00528" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Dianderas E.</DisplayName> <Person id="rp00524" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Zimick M.</DisplayName> <Person id="rp00522" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sheen P.</DisplayName> <Person id="rp00526" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Coronel J.</DisplayName> <Person id="rp00523" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Fuentes P.</DisplayName> <Person id="rp00525" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kemper G.</DisplayName> <Person id="rp00527" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>International Institute of Informatics and Systemics, IIIS</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Ziehl-neelsen</Keyword> <Keyword>Algorithms</Keyword> <Keyword>Bacilli</Keyword> <Keyword>Bacteriology</Keyword> <Keyword>Cybernetics</Keyword> <Keyword>Cybernetics</Keyword> <Keyword>Diagnosis</Keyword> <Keyword>Geometry</Keyword> <Keyword>Image enhancement</Keyword> <Keyword>Image enhancement</Keyword> <Keyword>Image processing</Keyword> <Keyword>Optical data processing</Keyword> <Keyword>Plasma diagnostics</Keyword> <Keyword>Sensitivity analysis</Keyword> <Keyword>Baciloscopy</Keyword> <Keyword>Digital image</Keyword> <Keyword>Sputum smear</Keyword> <Abstract>The present study proposes a method of automatic detection of tuberculosis (TB) bacilli from digital images of Ziehl Neelsen sputum smear baciloscopy. The method is based on an algorithm that aims to automate the interpretation of optical microscopic images of sputum smears. According to the World Health Organization (WHO), a specialist can not analyze and process more than 20 samples per day (in order to not affect the analysis sensitivity and commit errors in diagnosis). Therefore, an automated tool as the proposed here, is an important contribution to the current efforts to fight tuberculosis. The algorithm is based on geometric eccentricity of ellipses and improvement of RGB component tones. Correspondence functions adjusted to sample preparation conditions were applied in order to improve the RGB primary component tones of the image. This allows to obtain an adequate segmentation of interest objects. For the recognition of each object as bacillus, the geometric descriptor of eccentricity of the ellipse was applied. The algorithm was validated with 66 independent sputum samples from TB patients. A sensitivity of 88.75% and a specificity of 95.5% was obtained for the diluted pellet method for sample preparation. © by the International Institute of Informatics and Systemics.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).