Reducción de la dimensionalidad de series temporales climáticas usando Deep Multi-Layer Autoencoder

Descripción del Articulo

En este trabajo se propone un m´etodo basado en autoencoder para la reducción de la dimensionalidad de series temporales, el cual consiste en la configuración del número de capas y unidades. El método se comparo´ con técnicas de reducción de dimensionalidad lineales y no lineales. Además se provee do...

Descripción completa

Detalles Bibliográficos
Autor: Alfonte Zapana, Reynaldo
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1666
Enlace del recurso:https://hdl.handle.net/20.500.12390/1666
Nivel de acceso:acceso abierto
Materia:Visualización
Series temporales climáticas
Autoencoder
Aprendizaje profundo
https://purl.org/pe-repo/ocde/ford#2.08.03
Descripción
Sumario:En este trabajo se propone un m´etodo basado en autoencoder para la reducción de la dimensionalidad de series temporales, el cual consiste en la configuración del número de capas y unidades. El método se comparo´ con técnicas de reducción de dimensionalidad lineales y no lineales. Además se provee dos casos de estudio para determinar relaciones en datos climáticos. Es importante la representación adecuada de las series temporales al momento de proceder a analizar con algoritmos de minería de datos y aprendizaje automático. En series temporales hay una diversidad de t´ecnicas de representación que a la vez hacen reducción de dimensionalidad.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).