Unsupervised detection of disturbances in 2D radiographs
Descripción del Articulo
This work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of CONCYTEC-PERU and German BMBF research campus MODAL (grant no. 3FO18501). The authors thank CiTeSoft-UNSA for the database access. The authors report no conflicts of interest.
| Autores: | , , , , , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2021 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/3075 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/3075 https://doi.org/10.1109/ISBI48211.2021.9434091 |
| Nivel de acceso: | acceso abierto |
| Materia: | Generative models Anomaly detection https://purl.org/pe-repo/ocde/ford#3.02.12 |
| id |
CONC_e283b860782402f6d88f39fd9945e02b |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/3075 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Unsupervised detection of disturbances in 2D radiographs |
| title |
Unsupervised detection of disturbances in 2D radiographs |
| spellingShingle |
Unsupervised detection of disturbances in 2D radiographs Estacio L. Generative models Anomaly detection https://purl.org/pe-repo/ocde/ford#3.02.12 |
| title_short |
Unsupervised detection of disturbances in 2D radiographs |
| title_full |
Unsupervised detection of disturbances in 2D radiographs |
| title_fullStr |
Unsupervised detection of disturbances in 2D radiographs |
| title_full_unstemmed |
Unsupervised detection of disturbances in 2D radiographs |
| title_sort |
Unsupervised detection of disturbances in 2D radiographs |
| author |
Estacio L. |
| author_facet |
Estacio L. Ehlke M. Tack A. Castro E. Lamecker H. Mora R. Zachow S. |
| author_role |
author |
| author2 |
Ehlke M. Tack A. Castro E. Lamecker H. Mora R. Zachow S. |
| author2_role |
author author author author author author |
| dc.contributor.author.fl_str_mv |
Estacio L. Ehlke M. Tack A. Castro E. Lamecker H. Mora R. Zachow S. |
| dc.subject.none.fl_str_mv |
Generative models |
| topic |
Generative models Anomaly detection https://purl.org/pe-repo/ocde/ford#3.02.12 |
| dc.subject.es_PE.fl_str_mv |
Anomaly detection |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#3.02.12 |
| description |
This work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of CONCYTEC-PERU and German BMBF research campus MODAL (grant no. 3FO18501). The authors thank CiTeSoft-UNSA for the database access. The authors report no conflicts of interest. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/3075 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/ISBI48211.2021.9434091 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85107194158 |
| url |
https://hdl.handle.net/20.500.12390/3075 https://doi.org/10.1109/ISBI48211.2021.9434091 |
| identifier_str_mv |
2-s2.0-85107194158 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Proceedings - International Symposium on Biomedical Imaging |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
IEEE Computer Society |
| publisher.none.fl_str_mv |
IEEE Computer Society |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883024917823488 |
| spelling |
Publicationrp08874600rp08873600rp08877600rp08872600rp08876600rp06835600rp08875600Estacio L.Ehlke M.Tack A.Castro E.Lamecker H.Mora R.Zachow S.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/3075https://doi.org/10.1109/ISBI48211.2021.94340912-s2.0-85107194158This work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of CONCYTEC-PERU and German BMBF research campus MODAL (grant no. 3FO18501). The authors thank CiTeSoft-UNSA for the database access. The authors report no conflicts of interest.We present a method based on a generative model for detection of disturbances such as prosthesis, screws, zippers, and metals in 2D radiographs. The generative model is trained in an unsupervised fashion using clinical radiographs as well as simulated data, none of which contain disturbances. Our approach employs a latent space consistency loss which has the benefit of identifying similarities, and is enforced to reconstruct X-rays without disturbances. In order to detect images with disturbances, an anomaly score is computed also employing the Frechet distance between the input X-ray and the reconstructed one using our generative model. Validation was performed using clinical pelvis radiographs. We achieved an AUC of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of our method for detecting outliers as well as the advantage of utilizing synthetic data.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengIEEE Computer SocietyProceedings - International Symposium on Biomedical Imaginginfo:eu-repo/semantics/openAccessGenerative modelsAnomaly detection-1https://purl.org/pe-repo/ocde/ford#3.02.12-1Unsupervised detection of disturbances in 2D radiographsinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/3075oai:repositorio.concytec.gob.pe:20.500.12390/30752024-05-30 15:42:46.512http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="bf2c9197-d863-43c5-9108-65cb8259abf9"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Unsupervised detection of disturbances in 2D radiographs</Title> <PublishedIn> <Publication> <Title>Proceedings - International Symposium on Biomedical Imaging</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1109/ISBI48211.2021.9434091</DOI> <SCP-Number>2-s2.0-85107194158</SCP-Number> <Authors> <Author> <DisplayName>Estacio L.</DisplayName> <Person id="rp08874" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ehlke M.</DisplayName> <Person id="rp08873" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Tack A.</DisplayName> <Person id="rp08877" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Castro E.</DisplayName> <Person id="rp08872" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lamecker H.</DisplayName> <Person id="rp08876" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mora R.</DisplayName> <Person id="rp06835" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Zachow S.</DisplayName> <Person id="rp08875" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE Computer Society</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Generative models</Keyword> <Keyword>Anomaly detection</Keyword> <Abstract>We present a method based on a generative model for detection of disturbances such as prosthesis, screws, zippers, and metals in 2D radiographs. The generative model is trained in an unsupervised fashion using clinical radiographs as well as simulated data, none of which contain disturbances. Our approach employs a latent space consistency loss which has the benefit of identifying similarities, and is enforced to reconstruct X-rays without disturbances. In order to detect images with disturbances, an anomaly score is computed also employing the Frechet distance between the input X-ray and the reconstructed one using our generative model. Validation was performed using clinical pelvis radiographs. We achieved an AUC of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of our method for detecting outliers as well as the advantage of utilizing synthetic data.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.425363 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).