The Peruvian Amazon forestry dataset: A leaf image classification corpus

Descripción del Articulo

Forest census allows getting precise data for logging planning and elaboration of the forest management plan. Species identification blunders carry inadequate forest management plans and high risks inside forest concessions. Hence, an identification protocol prevents the exploitation of non-commerci...

Descripción completa

Detalles Bibliográficos
Autores: Vizcarra G., Bermejo D., Mauricio A., Zarate Gomez R., Dianderas E.
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2335
Enlace del recurso:https://hdl.handle.net/20.500.12390/2335
https://doi.org/10.1016/j.ecoinf.2021.101268
Nivel de acceso:acceso abierto
Materia:Visual interpretation
Deep learning
Interpretation
Leaves dataset
Peruvian Amazon
http://purl.org/pe-repo/ocde/ford#4.01.02
id CONC_d6488560456c0df34037d6fe7a2ea114
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2335
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv The Peruvian Amazon forestry dataset: A leaf image classification corpus
title The Peruvian Amazon forestry dataset: A leaf image classification corpus
spellingShingle The Peruvian Amazon forestry dataset: A leaf image classification corpus
Vizcarra G.
Visual interpretation
Deep learning
Interpretation
Leaves dataset
Peruvian Amazon
http://purl.org/pe-repo/ocde/ford#4.01.02
title_short The Peruvian Amazon forestry dataset: A leaf image classification corpus
title_full The Peruvian Amazon forestry dataset: A leaf image classification corpus
title_fullStr The Peruvian Amazon forestry dataset: A leaf image classification corpus
title_full_unstemmed The Peruvian Amazon forestry dataset: A leaf image classification corpus
title_sort The Peruvian Amazon forestry dataset: A leaf image classification corpus
author Vizcarra G.
author_facet Vizcarra G.
Bermejo D.
Mauricio A.
Zarate Gomez R.
Dianderas E.
author_role author
author2 Bermejo D.
Mauricio A.
Zarate Gomez R.
Dianderas E.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Vizcarra G.
Bermejo D.
Mauricio A.
Zarate Gomez R.
Dianderas E.
dc.subject.none.fl_str_mv Visual interpretation
topic Visual interpretation
Deep learning
Interpretation
Leaves dataset
Peruvian Amazon
http://purl.org/pe-repo/ocde/ford#4.01.02
dc.subject.es_PE.fl_str_mv Deep learning
Interpretation
Leaves dataset
Peruvian Amazon
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#4.01.02
description Forest census allows getting precise data for logging planning and elaboration of the forest management plan. Species identification blunders carry inadequate forest management plans and high risks inside forest concessions. Hence, an identification protocol prevents the exploitation of non-commercial or endangered timber species. The current Peruvian legislation allows the incorporation of non-technical experts, called “materos”, during the identification. Materos use common names given by the folklore and traditions of their communities instead of formal ones, which generally lead to misclassifications. In the real world, logging companies hire materos instead of botanists due to cost/time limitations. Given such a motivation, we explore an end-to-end software solution to automatize the species identification. This paper introduces the Peruvian Amazon Forestry Dataset, which includes 59,441 leaves samples from ten of the most profitable and endangered timber-tree species. The proposal contemplates a background removal algorithm to feed a pre-trained CNN by the ImageNet dataset. We evaluate the quantitative (accuracy metric) and qualitative (visual interpretation) impacts of each stage by ablation experiments. The results show a 96.64% training accuracy and 96.52% testing accuracy on the VGG-19 model. Furthermore, the visual interpretation of the model evidences that leaf venations have the highest correlation in the plant recognition task. © 2021
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Vizcarra, G., Bermejo, D., Mauricio, A., Gomez, R. Z., & Dianderas, E. (2021). The Peruvian Amazon forestry dataset: A leaf image classification corpus. Ecological Informatics, 62, 101268.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2335
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.ecoinf.2021.101268
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85103308612
identifier_str_mv Vizcarra, G., Bermejo, D., Mauricio, A., Gomez, R. Z., & Dianderas, E. (2021). The Peruvian Amazon forestry dataset: A leaf image classification corpus. Ecological Informatics, 62, 101268.
2-s2.0-85103308612
url https://hdl.handle.net/20.500.12390/2335
https://doi.org/10.1016/j.ecoinf.2021.101268
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Ecological Informatics
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
bitstream.url.fl_str_mv https://repositorio.concytec.gob.pe/bitstreams/2e6a7857-818d-4306-9e0b-7bf607d3634f/download
https://repositorio.concytec.gob.pe/bitstreams/fc0f8661-0393-4a80-b3f2-a5133c4f49ef/download
https://repositorio.concytec.gob.pe/bitstreams/06d19e5e-673a-4028-8c9f-3dde08221506/download
bitstream.checksum.fl_str_mv fbf03e5ae9a4a7d80d9ba9c9721fffaf
1aabccc8bd111fbf88e5544f1a461ec7
fb4009712e92595d6b6bee18fdd12ff0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883110608502784
spelling Publicationrp00529600rp05585600rp00530600rp05584600rp00524600Vizcarra G.Bermejo D.Mauricio A.Zarate Gomez R.Dianderas E.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021Vizcarra, G., Bermejo, D., Mauricio, A., Gomez, R. Z., & Dianderas, E. (2021). The Peruvian Amazon forestry dataset: A leaf image classification corpus. Ecological Informatics, 62, 101268.https://hdl.handle.net/20.500.12390/2335https://doi.org/10.1016/j.ecoinf.2021.1012682-s2.0-85103308612Forest census allows getting precise data for logging planning and elaboration of the forest management plan. Species identification blunders carry inadequate forest management plans and high risks inside forest concessions. Hence, an identification protocol prevents the exploitation of non-commercial or endangered timber species. The current Peruvian legislation allows the incorporation of non-technical experts, called “materos”, during the identification. Materos use common names given by the folklore and traditions of their communities instead of formal ones, which generally lead to misclassifications. In the real world, logging companies hire materos instead of botanists due to cost/time limitations. Given such a motivation, we explore an end-to-end software solution to automatize the species identification. This paper introduces the Peruvian Amazon Forestry Dataset, which includes 59,441 leaves samples from ten of the most profitable and endangered timber-tree species. The proposal contemplates a background removal algorithm to feed a pre-trained CNN by the ImageNet dataset. We evaluate the quantitative (accuracy metric) and qualitative (visual interpretation) impacts of each stage by ablation experiments. The results show a 96.64% training accuracy and 96.52% testing accuracy on the VGG-19 model. Furthermore, the visual interpretation of the model evidences that leaf venations have the highest correlation in the plant recognition task. © 2021Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier B.V.Ecological Informaticsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Visual interpretationDeep learning-1Interpretation-1Leaves dataset-1Peruvian Amazon-1http://purl.org/pe-repo/ocde/ford#4.01.02-1The Peruvian Amazon forestry dataset: A leaf image classification corpusinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALThe Peruvian Amazon-Ecological Informatics.pdfThe Peruvian Amazon-Ecological Informatics.pdfapplication/pdf2957736https://repositorio.concytec.gob.pe/bitstreams/2e6a7857-818d-4306-9e0b-7bf607d3634f/downloadfbf03e5ae9a4a7d80d9ba9c9721fffafMD51TEXTThe Peruvian Amazon-Ecological Informatics.pdf.txtThe Peruvian Amazon-Ecological Informatics.pdf.txtExtracted texttext/plain51250https://repositorio.concytec.gob.pe/bitstreams/fc0f8661-0393-4a80-b3f2-a5133c4f49ef/download1aabccc8bd111fbf88e5544f1a461ec7MD52THUMBNAILThe Peruvian Amazon-Ecological Informatics.pdf.jpgThe Peruvian Amazon-Ecological Informatics.pdf.jpgGenerated Thumbnailimage/jpeg5701https://repositorio.concytec.gob.pe/bitstreams/06d19e5e-673a-4028-8c9f-3dde08221506/downloadfb4009712e92595d6b6bee18fdd12ff0MD5320.500.12390/2335oai:repositorio.concytec.gob.pe:20.500.12390/23352025-01-16 22:00:29.637https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="6062fb65-bf82-4161-94a2-a71ac3e4fc15"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>The Peruvian Amazon forestry dataset: A leaf image classification corpus</Title> <PublishedIn> <Publication> <Title>Ecological Informatics</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1016/j.ecoinf.2021.101268</DOI> <SCP-Number>2-s2.0-85103308612</SCP-Number> <Authors> <Author> <DisplayName>Vizcarra G.</DisplayName> <Person id="rp00529" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bermejo D.</DisplayName> <Person id="rp05585" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mauricio A.</DisplayName> <Person id="rp00530" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Zarate Gomez R.</DisplayName> <Person id="rp05584" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Dianderas E.</DisplayName> <Person id="rp00524" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier B.V.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Visual interpretation</Keyword> <Keyword>Deep learning</Keyword> <Keyword>Interpretation</Keyword> <Keyword>Leaves dataset</Keyword> <Keyword>Peruvian Amazon</Keyword> <Abstract>Forest census allows getting precise data for logging planning and elaboration of the forest management plan. Species identification blunders carry inadequate forest management plans and high risks inside forest concessions. Hence, an identification protocol prevents the exploitation of non-commercial or endangered timber species. The current Peruvian legislation allows the incorporation of non-technical experts, called “materos”, during the identification. Materos use common names given by the folklore and traditions of their communities instead of formal ones, which generally lead to misclassifications. In the real world, logging companies hire materos instead of botanists due to cost/time limitations. Given such a motivation, we explore an end-to-end software solution to automatize the species identification. This paper introduces the Peruvian Amazon Forestry Dataset, which includes 59,441 leaves samples from ten of the most profitable and endangered timber-tree species. The proposal contemplates a background removal algorithm to feed a pre-trained CNN by the ImageNet dataset. We evaluate the quantitative (accuracy metric) and qualitative (visual interpretation) impacts of each stage by ablation experiments. The results show a 96.64% training accuracy and 96.52% testing accuracy on the VGG-19 model. Furthermore, the visual interpretation of the model evidences that leaf venations have the highest correlation in the plant recognition task. © 2021</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.394457
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).