Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib

Descripción del Articulo

The automatic characterization and classification of plant species is an important task for plant taxonomists. On this work, we propose the use of well-known pre-trained Deep Convolutional Neural Networks (DCNN) for the characterization of plants based on their leaf midrib. The samples studied are m...

Descripción completa

Detalles Bibliográficos
Autores: Scabini, Leonardo F. S., Condori, Rayner M., Munhoz, Isabella C. L., Bruno, Odemir M.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2803
Enlace del recurso:https://hdl.handle.net/20.500.12390/2803
https://doi.org/10.1007/978-3-030-29891-3_34
Nivel de acceso:acceso abierto
Materia:Plant classification
Deep Convolutional Neural Networks
Global average pooling
Leaf midrib
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_d3c0db2e06b53e1172956c42d433df03
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2803
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib
title Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib
spellingShingle Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib
Scabini, Leonardo F. S.
Plant classification
Deep Convolutional Neural Networks
Global average pooling
Leaf midrib
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib
title_full Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib
title_fullStr Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib
title_full_unstemmed Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib
title_sort Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib
author Scabini, Leonardo F. S.
author_facet Scabini, Leonardo F. S.
Condori, Rayner M.
Munhoz, Isabella C. L.
Bruno, Odemir M.
author_role author
author2 Condori, Rayner M.
Munhoz, Isabella C. L.
Bruno, Odemir M.
author2_role author
author
author
dc.contributor.author.fl_str_mv Scabini, Leonardo F. S.
Condori, Rayner M.
Munhoz, Isabella C. L.
Bruno, Odemir M.
dc.subject.none.fl_str_mv Plant classification
topic Plant classification
Deep Convolutional Neural Networks
Global average pooling
Leaf midrib
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Deep Convolutional Neural Networks
Global average pooling
Leaf midrib
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description The automatic characterization and classification of plant species is an important task for plant taxonomists. On this work, we propose the use of well-known pre-trained Deep Convolutional Neural Networks (DCNN) for the characterization of plants based on their leaf midrib. The samples studied are microscope images of leaf midrib cross-sections taken from different specimens under varying conditions. Results with traditional handcrafted image descriptors demonstrate the difficulty to effectively characterize these samples. Our proposal is to use DCNN as a feature extractor through Global Average Pooling (GAP) over the raw output of its last convolutional layers without the application of summarizing functions such as ReLU and local poolings. Results indicate considerably performance improvements over previous approaches under different scenarios, varying the image color-space (gray-level or RGB) and the classifier (KNN or LDA). The highest result is achieved by the deeper network analyzed, ResNet (101 layers deep), using the LDA classifier, with 99.20% of accuracy rate. However, shallower networks such as AlexNet also provide good classification results (97.36%), which is still a significant improvement over the best previous result (83.67% of combined fractal descriptors).
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2803
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-29891-3_34
url https://hdl.handle.net/20.500.12390/2803
https://doi.org/10.1007/978-3-030-29891-3_34
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer International Publishing
publisher.none.fl_str_mv Springer International Publishing
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175477063843840
spelling Publicationrp07509600rp07506600rp07508600rp07507600Scabini, Leonardo F. S.Condori, Rayner M.Munhoz, Isabella C. L.Bruno, Odemir M.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2803https://doi.org/10.1007/978-3-030-29891-3_34The automatic characterization and classification of plant species is an important task for plant taxonomists. On this work, we propose the use of well-known pre-trained Deep Convolutional Neural Networks (DCNN) for the characterization of plants based on their leaf midrib. The samples studied are microscope images of leaf midrib cross-sections taken from different specimens under varying conditions. Results with traditional handcrafted image descriptors demonstrate the difficulty to effectively characterize these samples. Our proposal is to use DCNN as a feature extractor through Global Average Pooling (GAP) over the raw output of its last convolutional layers without the application of summarizing functions such as ReLU and local poolings. Results indicate considerably performance improvements over previous approaches under different scenarios, varying the image color-space (gray-level or RGB) and the classifier (KNN or LDA). The highest result is achieved by the deeper network analyzed, ResNet (101 layers deep), using the LDA classifier, with 99.20% of accuracy rate. However, shallower networks such as AlexNet also provide good classification results (97.36%), which is still a significant improvement over the best previous result (83.67% of combined fractal descriptors).Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer International PublishingCOMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT IIinfo:eu-repo/semantics/openAccessPlant classificationDeep Convolutional Neural Networks-1Global average pooling-1Leaf midrib-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midribinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2803oai:repositorio.concytec.gob.pe:20.500.12390/28032024-05-30 15:49:54.125http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2b464d00-4b01-434a-beaa-f9c884f516d9"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib</Title> <PublishedIn> <Publication> <Title>COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-29891-3_34</DOI> <Authors> <Author> <DisplayName>Scabini, Leonardo F. S.</DisplayName> <Person id="rp07509" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condori, Rayner M.</DisplayName> <Person id="rp07506" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Munhoz, Isabella C. L.</DisplayName> <Person id="rp07508" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bruno, Odemir M.</DisplayName> <Person id="rp07507" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer International Publishing</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Plant classification</Keyword> <Keyword>Deep Convolutional Neural Networks</Keyword> <Keyword>Global average pooling</Keyword> <Keyword>Leaf midrib</Keyword> <Abstract>The automatic characterization and classification of plant species is an important task for plant taxonomists. On this work, we propose the use of well-known pre-trained Deep Convolutional Neural Networks (DCNN) for the characterization of plants based on their leaf midrib. The samples studied are microscope images of leaf midrib cross-sections taken from different specimens under varying conditions. Results with traditional handcrafted image descriptors demonstrate the difficulty to effectively characterize these samples. Our proposal is to use DCNN as a feature extractor through Global Average Pooling (GAP) over the raw output of its last convolutional layers without the application of summarizing functions such as ReLU and local poolings. Results indicate considerably performance improvements over previous approaches under different scenarios, varying the image color-space (gray-level or RGB) and the classifier (KNN or LDA). The highest result is achieved by the deeper network analyzed, ResNet (101 layers deep), using the LDA classifier, with 99.20% of accuracy rate. However, shallower networks such as AlexNet also provide good classification results (97.36%), which is still a significant improvement over the best previous result (83.67% of combined fractal descriptors).</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).