Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib
Descripción del Articulo
The automatic characterization and classification of plant species is an important task for plant taxonomists. On this work, we propose the use of well-known pre-trained Deep Convolutional Neural Networks (DCNN) for the characterization of plants based on their leaf midrib. The samples studied are m...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2803 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2803 https://doi.org/10.1007/978-3-030-29891-3_34 |
Nivel de acceso: | acceso abierto |
Materia: | Plant classification Deep Convolutional Neural Networks Global average pooling Leaf midrib http://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
CONC_d3c0db2e06b53e1172956c42d433df03 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2803 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib |
title |
Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib |
spellingShingle |
Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib Scabini, Leonardo F. S. Plant classification Deep Convolutional Neural Networks Global average pooling Leaf midrib http://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib |
title_full |
Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib |
title_fullStr |
Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib |
title_full_unstemmed |
Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib |
title_sort |
Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib |
author |
Scabini, Leonardo F. S. |
author_facet |
Scabini, Leonardo F. S. Condori, Rayner M. Munhoz, Isabella C. L. Bruno, Odemir M. |
author_role |
author |
author2 |
Condori, Rayner M. Munhoz, Isabella C. L. Bruno, Odemir M. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Scabini, Leonardo F. S. Condori, Rayner M. Munhoz, Isabella C. L. Bruno, Odemir M. |
dc.subject.none.fl_str_mv |
Plant classification |
topic |
Plant classification Deep Convolutional Neural Networks Global average pooling Leaf midrib http://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.es_PE.fl_str_mv |
Deep Convolutional Neural Networks Global average pooling Leaf midrib |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
The automatic characterization and classification of plant species is an important task for plant taxonomists. On this work, we propose the use of well-known pre-trained Deep Convolutional Neural Networks (DCNN) for the characterization of plants based on their leaf midrib. The samples studied are microscope images of leaf midrib cross-sections taken from different specimens under varying conditions. Results with traditional handcrafted image descriptors demonstrate the difficulty to effectively characterize these samples. Our proposal is to use DCNN as a feature extractor through Global Average Pooling (GAP) over the raw output of its last convolutional layers without the application of summarizing functions such as ReLU and local poolings. Results indicate considerably performance improvements over previous approaches under different scenarios, varying the image color-space (gray-level or RGB) and the classifier (KNN or LDA). The highest result is achieved by the deeper network analyzed, ResNet (101 layers deep), using the LDA classifier, with 99.20% of accuracy rate. However, shallower networks such as AlexNet also provide good classification results (97.36%), which is still a significant improvement over the best previous result (83.67% of combined fractal descriptors). |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2803 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-29891-3_34 |
url |
https://hdl.handle.net/20.500.12390/2803 https://doi.org/10.1007/978-3-030-29891-3_34 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer International Publishing |
publisher.none.fl_str_mv |
Springer International Publishing |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175477063843840 |
spelling |
Publicationrp07509600rp07506600rp07508600rp07507600Scabini, Leonardo F. S.Condori, Rayner M.Munhoz, Isabella C. L.Bruno, Odemir M.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2803https://doi.org/10.1007/978-3-030-29891-3_34The automatic characterization and classification of plant species is an important task for plant taxonomists. On this work, we propose the use of well-known pre-trained Deep Convolutional Neural Networks (DCNN) for the characterization of plants based on their leaf midrib. The samples studied are microscope images of leaf midrib cross-sections taken from different specimens under varying conditions. Results with traditional handcrafted image descriptors demonstrate the difficulty to effectively characterize these samples. Our proposal is to use DCNN as a feature extractor through Global Average Pooling (GAP) over the raw output of its last convolutional layers without the application of summarizing functions such as ReLU and local poolings. Results indicate considerably performance improvements over previous approaches under different scenarios, varying the image color-space (gray-level or RGB) and the classifier (KNN or LDA). The highest result is achieved by the deeper network analyzed, ResNet (101 layers deep), using the LDA classifier, with 99.20% of accuracy rate. However, shallower networks such as AlexNet also provide good classification results (97.36%), which is still a significant improvement over the best previous result (83.67% of combined fractal descriptors).Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer International PublishingCOMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT IIinfo:eu-repo/semantics/openAccessPlant classificationDeep Convolutional Neural Networks-1Global average pooling-1Leaf midrib-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midribinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2803oai:repositorio.concytec.gob.pe:20.500.12390/28032024-05-30 15:49:54.125http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2b464d00-4b01-434a-beaa-f9c884f516d9"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Deep Convolutional Neural Networks for Plant Species Characterization Based on Leaf Midrib</Title> <PublishedIn> <Publication> <Title>COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-29891-3_34</DOI> <Authors> <Author> <DisplayName>Scabini, Leonardo F. S.</DisplayName> <Person id="rp07509" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condori, Rayner M.</DisplayName> <Person id="rp07506" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Munhoz, Isabella C. L.</DisplayName> <Person id="rp07508" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bruno, Odemir M.</DisplayName> <Person id="rp07507" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer International Publishing</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Plant classification</Keyword> <Keyword>Deep Convolutional Neural Networks</Keyword> <Keyword>Global average pooling</Keyword> <Keyword>Leaf midrib</Keyword> <Abstract>The automatic characterization and classification of plant species is an important task for plant taxonomists. On this work, we propose the use of well-known pre-trained Deep Convolutional Neural Networks (DCNN) for the characterization of plants based on their leaf midrib. The samples studied are microscope images of leaf midrib cross-sections taken from different specimens under varying conditions. Results with traditional handcrafted image descriptors demonstrate the difficulty to effectively characterize these samples. Our proposal is to use DCNN as a feature extractor through Global Average Pooling (GAP) over the raw output of its last convolutional layers without the application of summarizing functions such as ReLU and local poolings. Results indicate considerably performance improvements over previous approaches under different scenarios, varying the image color-space (gray-level or RGB) and the classifier (KNN or LDA). The highest result is achieved by the deeper network analyzed, ResNet (101 layers deep), using the LDA classifier, with 99.20% of accuracy rate. However, shallower networks such as AlexNet also provide good classification results (97.36%), which is still a significant improvement over the best previous result (83.67% of combined fractal descriptors).</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).