Neuromorphic computing for temporal scientific data classification

Descripción del Articulo

This material is based upon work supported in part by the U.S. Department of Energy, Ofce of Science, Ofce of Advanced Scientifc Computing Research, under contract number DE-AC05-00OR22725. Research sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National L...

Descripción completa

Detalles Bibliográficos
Autores: Schuman C.D., Potok T.E., Young S., Patton R., Perdue G., Chakma G., Wyer A., Rose G.S.
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/626
Enlace del recurso:https://hdl.handle.net/20.500.12390/626
https://doi.org/10.1145/3183584.3183612
Nivel de acceso:acceso abierto
Materia:Spiking neural networks
Neural networks
Convolutional neural network
Neuromorphic
Neuromorphic computing
Scientific data
Classification (of information)
https://purl.org/pe-repo/ocde/ford#1.02.00
id CONC_c95a119a8fc8dfc5cd22d593bf726d42
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/626
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Neuromorphic computing for temporal scientific data classification
title Neuromorphic computing for temporal scientific data classification
spellingShingle Neuromorphic computing for temporal scientific data classification
Schuman C.D.
Spiking neural networks
Neural networks
Convolutional neural network
Neuromorphic
Neuromorphic computing
Scientific data
Classification (of information)
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Neuromorphic computing for temporal scientific data classification
title_full Neuromorphic computing for temporal scientific data classification
title_fullStr Neuromorphic computing for temporal scientific data classification
title_full_unstemmed Neuromorphic computing for temporal scientific data classification
title_sort Neuromorphic computing for temporal scientific data classification
author Schuman C.D.
author_facet Schuman C.D.
Potok T.E.
Young S.
Patton R.
Perdue G.
Chakma G.
Wyer A.
Rose G.S.
author_role author
author2 Potok T.E.
Young S.
Patton R.
Perdue G.
Chakma G.
Wyer A.
Rose G.S.
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Schuman C.D.
Potok T.E.
Young S.
Patton R.
Perdue G.
Chakma G.
Wyer A.
Rose G.S.
dc.subject.none.fl_str_mv Spiking neural networks
topic Spiking neural networks
Neural networks
Convolutional neural network
Neuromorphic
Neuromorphic computing
Scientific data
Classification (of information)
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.es_PE.fl_str_mv Neural networks
Convolutional neural network
Neuromorphic
Neuromorphic computing
Scientific data
Classification (of information)
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
description This material is based upon work supported in part by the U.S. Department of Energy, Ofce of Science, Ofce of Advanced Scientifc Computing Research, under contract number DE-AC05-00OR22725. Research sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Ofce of Science User Facility supported under Contract DE-AC05-00OR22725. We would like to thank the MINERvA collaboration for the use of their simulated data and for many useful and stimulating conversations. MINERvA is supported by the Fermi National Accelerator Laboratory under US Department of Energy contract No. DE-AC02-07CH11359 which included the MINERvA construction project. MINERvA construction support was also granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Support for participating MINERvA physicists was provided by NSF and DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGIUNI (Peru), and by Latin American Center for Physics (CLAF).
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.isbn.none.fl_str_mv urn:isbn:9781450364423
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/626
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1145/3183584.3183612
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85047005652
identifier_str_mv urn:isbn:9781450364423
2-s2.0-85047005652
url https://hdl.handle.net/20.500.12390/626
https://doi.org/10.1145/3183584.3183612
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv ACM International Conference Proceeding Series
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Association for Computing Machinery
publisher.none.fl_str_mv Association for Computing Machinery
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175553260716032
spelling Publicationrp01262600rp01263600rp01135500rp01134500rp00806500rp01261600rp01264600rp01265600Schuman C.D.Potok T.E.Young S.Patton R.Perdue G.Chakma G.Wyer A.Rose G.S.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017urn:isbn:9781450364423https://hdl.handle.net/20.500.12390/626https://doi.org/10.1145/3183584.31836122-s2.0-85047005652This material is based upon work supported in part by the U.S. Department of Energy, Ofce of Science, Ofce of Advanced Scientifc Computing Research, under contract number DE-AC05-00OR22725. Research sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Ofce of Science User Facility supported under Contract DE-AC05-00OR22725. We would like to thank the MINERvA collaboration for the use of their simulated data and for many useful and stimulating conversations. MINERvA is supported by the Fermi National Accelerator Laboratory under US Department of Energy contract No. DE-AC02-07CH11359 which included the MINERvA construction project. MINERvA construction support was also granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Support for participating MINERvA physicists was provided by NSF and DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGIUNI (Peru), and by Latin American Center for Physics (CLAF).In this work, we apply a spiking neural network model and an associated memristive neuromorphic implementation to an application in classifying temporal scientific data. We demonstrate that the spiking neural network model achieves comparable results to a previously reported convolutional neural network model, with significantly fewer neurons and synapsesConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengAssociation for Computing MachineryACM International Conference Proceeding Seriesinfo:eu-repo/semantics/openAccessSpiking neural networksNeural networks-1Convolutional neural network-1Neuromorphic-1Neuromorphic computing-1Scientific data-1Classification (of information)-1https://purl.org/pe-repo/ocde/ford#1.02.00-1Neuromorphic computing for temporal scientific data classificationinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/626oai:repositorio.concytec.gob.pe:20.500.12390/6262024-05-30 15:49:55.193http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="5acab5b1-1a89-415e-8852-80dc74ba0979"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Neuromorphic computing for temporal scientific data classification</Title> <PublishedIn> <Publication> <Title>ACM International Conference Proceeding Series</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1145/3183584.3183612</DOI> <SCP-Number>2-s2.0-85047005652</SCP-Number> <ISBN>urn:isbn:9781450364423</ISBN> <Authors> <Author> <DisplayName>Schuman C.D.</DisplayName> <Person id="rp01262" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Potok T.E.</DisplayName> <Person id="rp01263" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Young S.</DisplayName> <Person id="rp01135" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Patton R.</DisplayName> <Person id="rp01134" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Perdue G.</DisplayName> <Person id="rp00806" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Chakma G.</DisplayName> <Person id="rp01261" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Wyer A.</DisplayName> <Person id="rp01264" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rose G.S.</DisplayName> <Person id="rp01265" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Association for Computing Machinery</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Spiking neural networks</Keyword> <Keyword>Neural networks</Keyword> <Keyword>Convolutional neural network</Keyword> <Keyword>Neuromorphic</Keyword> <Keyword>Neuromorphic computing</Keyword> <Keyword>Scientific data</Keyword> <Keyword>Classification (of information)</Keyword> <Abstract>In this work, we apply a spiking neural network model and an associated memristive neuromorphic implementation to an application in classifying temporal scientific data. We demonstrate that the spiking neural network model achieves comparable results to a previously reported convolutional neural network model, with significantly fewer neurons and synapses</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).