Neuromorphic computing for temporal scientific data classification
Descripción del Articulo
This material is based upon work supported in part by the U.S. Department of Energy, Ofce of Science, Ofce of Advanced Scientifc Computing Research, under contract number DE-AC05-00OR22725. Research sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National L...
Autores: | , , , , , , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2017 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/626 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/626 https://doi.org/10.1145/3183584.3183612 |
Nivel de acceso: | acceso abierto |
Materia: | Spiking neural networks Neural networks Convolutional neural network Neuromorphic Neuromorphic computing Scientific data Classification (of information) https://purl.org/pe-repo/ocde/ford#1.02.00 |
id |
CONC_c95a119a8fc8dfc5cd22d593bf726d42 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/626 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Neuromorphic computing for temporal scientific data classification |
title |
Neuromorphic computing for temporal scientific data classification |
spellingShingle |
Neuromorphic computing for temporal scientific data classification Schuman C.D. Spiking neural networks Neural networks Convolutional neural network Neuromorphic Neuromorphic computing Scientific data Classification (of information) https://purl.org/pe-repo/ocde/ford#1.02.00 |
title_short |
Neuromorphic computing for temporal scientific data classification |
title_full |
Neuromorphic computing for temporal scientific data classification |
title_fullStr |
Neuromorphic computing for temporal scientific data classification |
title_full_unstemmed |
Neuromorphic computing for temporal scientific data classification |
title_sort |
Neuromorphic computing for temporal scientific data classification |
author |
Schuman C.D. |
author_facet |
Schuman C.D. Potok T.E. Young S. Patton R. Perdue G. Chakma G. Wyer A. Rose G.S. |
author_role |
author |
author2 |
Potok T.E. Young S. Patton R. Perdue G. Chakma G. Wyer A. Rose G.S. |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Schuman C.D. Potok T.E. Young S. Patton R. Perdue G. Chakma G. Wyer A. Rose G.S. |
dc.subject.none.fl_str_mv |
Spiking neural networks |
topic |
Spiking neural networks Neural networks Convolutional neural network Neuromorphic Neuromorphic computing Scientific data Classification (of information) https://purl.org/pe-repo/ocde/ford#1.02.00 |
dc.subject.es_PE.fl_str_mv |
Neural networks Convolutional neural network Neuromorphic Neuromorphic computing Scientific data Classification (of information) |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 |
description |
This material is based upon work supported in part by the U.S. Department of Energy, Ofce of Science, Ofce of Advanced Scientifc Computing Research, under contract number DE-AC05-00OR22725. Research sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Ofce of Science User Facility supported under Contract DE-AC05-00OR22725. We would like to thank the MINERvA collaboration for the use of their simulated data and for many useful and stimulating conversations. MINERvA is supported by the Fermi National Accelerator Laboratory under US Department of Energy contract No. DE-AC02-07CH11359 which included the MINERvA construction project. MINERvA construction support was also granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Support for participating MINERvA physicists was provided by NSF and DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGIUNI (Peru), and by Latin American Center for Physics (CLAF). |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.isbn.none.fl_str_mv |
urn:isbn:9781450364423 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/626 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1145/3183584.3183612 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85047005652 |
identifier_str_mv |
urn:isbn:9781450364423 2-s2.0-85047005652 |
url |
https://hdl.handle.net/20.500.12390/626 https://doi.org/10.1145/3183584.3183612 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
ACM International Conference Proceeding Series |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Association for Computing Machinery |
publisher.none.fl_str_mv |
Association for Computing Machinery |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175553260716032 |
spelling |
Publicationrp01262600rp01263600rp01135500rp01134500rp00806500rp01261600rp01264600rp01265600Schuman C.D.Potok T.E.Young S.Patton R.Perdue G.Chakma G.Wyer A.Rose G.S.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017urn:isbn:9781450364423https://hdl.handle.net/20.500.12390/626https://doi.org/10.1145/3183584.31836122-s2.0-85047005652This material is based upon work supported in part by the U.S. Department of Energy, Ofce of Science, Ofce of Advanced Scientifc Computing Research, under contract number DE-AC05-00OR22725. Research sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Ofce of Science User Facility supported under Contract DE-AC05-00OR22725. We would like to thank the MINERvA collaboration for the use of their simulated data and for many useful and stimulating conversations. MINERvA is supported by the Fermi National Accelerator Laboratory under US Department of Energy contract No. DE-AC02-07CH11359 which included the MINERvA construction project. MINERvA construction support was also granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Support for participating MINERvA physicists was provided by NSF and DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGIUNI (Peru), and by Latin American Center for Physics (CLAF).In this work, we apply a spiking neural network model and an associated memristive neuromorphic implementation to an application in classifying temporal scientific data. We demonstrate that the spiking neural network model achieves comparable results to a previously reported convolutional neural network model, with significantly fewer neurons and synapsesConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengAssociation for Computing MachineryACM International Conference Proceeding Seriesinfo:eu-repo/semantics/openAccessSpiking neural networksNeural networks-1Convolutional neural network-1Neuromorphic-1Neuromorphic computing-1Scientific data-1Classification (of information)-1https://purl.org/pe-repo/ocde/ford#1.02.00-1Neuromorphic computing for temporal scientific data classificationinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/626oai:repositorio.concytec.gob.pe:20.500.12390/6262024-05-30 15:49:55.193http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="5acab5b1-1a89-415e-8852-80dc74ba0979"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Neuromorphic computing for temporal scientific data classification</Title> <PublishedIn> <Publication> <Title>ACM International Conference Proceeding Series</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1145/3183584.3183612</DOI> <SCP-Number>2-s2.0-85047005652</SCP-Number> <ISBN>urn:isbn:9781450364423</ISBN> <Authors> <Author> <DisplayName>Schuman C.D.</DisplayName> <Person id="rp01262" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Potok T.E.</DisplayName> <Person id="rp01263" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Young S.</DisplayName> <Person id="rp01135" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Patton R.</DisplayName> <Person id="rp01134" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Perdue G.</DisplayName> <Person id="rp00806" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Chakma G.</DisplayName> <Person id="rp01261" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Wyer A.</DisplayName> <Person id="rp01264" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rose G.S.</DisplayName> <Person id="rp01265" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Association for Computing Machinery</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Spiking neural networks</Keyword> <Keyword>Neural networks</Keyword> <Keyword>Convolutional neural network</Keyword> <Keyword>Neuromorphic</Keyword> <Keyword>Neuromorphic computing</Keyword> <Keyword>Scientific data</Keyword> <Keyword>Classification (of information)</Keyword> <Abstract>In this work, we apply a spiking neural network model and an associated memristive neuromorphic implementation to an application in classifying temporal scientific data. We demonstrate that the spiking neural network model achieves comparable results to a previously reported convolutional neural network model, with significantly fewer neurons and synapses</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).