Indium Mineralization in the Volcanic Dome-Hosted Animas-Chocaya-Siete Suyos Polymetallic Deposit, Potosi, Bolivia

Descripción del Articulo

A volcanic dome complex of Miocene age hosts the In-bearing animas-Chocaya-Siete Suyos district in SW Bolivia. Ore mineralization occurs as banded and massive infillings in sub-vertical, NE-SW striking veins. In this article, a detailed petrographic study is combined with in situ mineral geochemistr...

Descripción completa

Detalles Bibliográficos
Autores: Torro, Lisard, Cazorla, Malena, Caries Melgarejo, Joan, Camprubi, Antoni, Tarres, Marta, Gemmrich, Laura, Campeny, Marc, Artiaga, David, Torres, Belen, Martinez, Alvaro, Mollinedo, Diva, Alfonso, Pura, Arce-Burgoa, Osvaldo R.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2826
Enlace del recurso:https://hdl.handle.net/20.500.12390/2826
https://doi.org/10.3390/min9100604
Nivel de acceso:acceso abierto
Materia:Geotechnical Engineering and Engineering Geology
Geology
http://purl.org/pe-repo/ocde/ford#1.05.02
id CONC_b4e9c1e2afff8b4a040bbdef08c1687d
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2826
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Indium Mineralization in the Volcanic Dome-Hosted Animas-Chocaya-Siete Suyos Polymetallic Deposit, Potosi, Bolivia
title Indium Mineralization in the Volcanic Dome-Hosted Animas-Chocaya-Siete Suyos Polymetallic Deposit, Potosi, Bolivia
spellingShingle Indium Mineralization in the Volcanic Dome-Hosted Animas-Chocaya-Siete Suyos Polymetallic Deposit, Potosi, Bolivia
Torro, Lisard
Geotechnical Engineering and Engineering Geology
Geology
http://purl.org/pe-repo/ocde/ford#1.05.02
title_short Indium Mineralization in the Volcanic Dome-Hosted Animas-Chocaya-Siete Suyos Polymetallic Deposit, Potosi, Bolivia
title_full Indium Mineralization in the Volcanic Dome-Hosted Animas-Chocaya-Siete Suyos Polymetallic Deposit, Potosi, Bolivia
title_fullStr Indium Mineralization in the Volcanic Dome-Hosted Animas-Chocaya-Siete Suyos Polymetallic Deposit, Potosi, Bolivia
title_full_unstemmed Indium Mineralization in the Volcanic Dome-Hosted Animas-Chocaya-Siete Suyos Polymetallic Deposit, Potosi, Bolivia
title_sort Indium Mineralization in the Volcanic Dome-Hosted Animas-Chocaya-Siete Suyos Polymetallic Deposit, Potosi, Bolivia
author Torro, Lisard
author_facet Torro, Lisard
Cazorla, Malena
Caries Melgarejo, Joan
Camprubi, Antoni
Tarres, Marta
Gemmrich, Laura
Campeny, Marc
Artiaga, David
Torres, Belen
Martinez, Alvaro
Mollinedo, Diva
Alfonso, Pura
Arce-Burgoa, Osvaldo R.
author_role author
author2 Cazorla, Malena
Caries Melgarejo, Joan
Camprubi, Antoni
Tarres, Marta
Gemmrich, Laura
Campeny, Marc
Artiaga, David
Torres, Belen
Martinez, Alvaro
Mollinedo, Diva
Alfonso, Pura
Arce-Burgoa, Osvaldo R.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Torro, Lisard
Cazorla, Malena
Caries Melgarejo, Joan
Camprubi, Antoni
Tarres, Marta
Gemmrich, Laura
Campeny, Marc
Artiaga, David
Torres, Belen
Martinez, Alvaro
Mollinedo, Diva
Alfonso, Pura
Arce-Burgoa, Osvaldo R.
dc.subject.none.fl_str_mv Geotechnical Engineering and Engineering Geology
topic Geotechnical Engineering and Engineering Geology
Geology
http://purl.org/pe-repo/ocde/ford#1.05.02
dc.subject.es_PE.fl_str_mv Geology
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.02
description A volcanic dome complex of Miocene age hosts the In-bearing animas-Chocaya-Siete Suyos district in SW Bolivia. Ore mineralization occurs as banded and massive infillings in sub-vertical, NE-SW striking veins. In this article, a detailed petrographic study is combined with in situ mineral geochemistry determinations in ore from the Arturo, Chorro and Diez veins in the Siete Suyos mine, the animas, Burton, Colorada, and Rosario veins in the animas mine and the Nueva vein in the Chocaya mine. A three-stage paragenetic sequence is roughly determined for all of them, and includes (1) an early low-sulfidation stage that is dominated by cassiterite, pyrrhotite, arsenopyrite, and high-Fe sphalerite (FeS > 21 mol. %); (2) a second intermediate-sulfidation stage dominated by pyrite + marcasite +/- intermediate product, sphalerite (FeS < 21 mol. %), stannite, and local famatinite; and, (3) a late intermediate-sulfidation stage dominated by galena and Ag-Pb-Sn sulfosalts. Electron-probe microanalyses reveal high indium enrichment in stage-2 sphalerite (up to 9.66 wt.% In) and stannite (up to 4.11 wt.% In), and a moderate enrichment in rare wurtzite (up to 1.61 wt.% In), stage-1 sphalerite (0.35 wt.% In), cassiterite (up to 0.25 wt.% In2O3), and ramdohrite (up to 0.24 wt.% In). Therefore, the main indium mineralization in the district can be associated to the second, intermediate-sulfidation stage, chiefly in those veins in which sphalerite and stannite are more abundant. Atomic concentrations of In and Cu in sphalerite yield a positive correlation at Cu/In = 1 that agrees with a (Cu+ + In3+) <-> 2Zn(2+) coupled substitution. The availability of Cu in the mineralizing fluids during the crystallization of sphalerite is, in consequence, essential for the incorporation of indium in its crystal lattice and would control the distribution of indium enrichment at different scales. The highest concentrations of indium in sphalerite, which is found in the Diez vein in the Siete Suyos mine, occur in crustiform bands of sphalerite with local chalcopyrite disease texture, which has not been observed in the other studied veins. In stannite, the atomic concentrations of In are negatively correlated with those of Cu and Sn at Cu + In = 2 and Sn + In = 1. Thus, atomic proportions and correlations suggest the contextualization of the main indium mineralization in the sphalerite-stannite-roquesite pseudoternary system.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2826
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/min9100604
url https://hdl.handle.net/20.500.12390/2826
https://doi.org/10.3390/min9100604
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv MINERALS
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
bitstream.url.fl_str_mv https://repositorio.concytec.gob.pe/bitstreams/29ddd078-6d62-43d7-9aeb-ab5fe1638fcc/download
https://repositorio.concytec.gob.pe/bitstreams/70a998da-5644-4927-beb2-d82dced10fa2/download
https://repositorio.concytec.gob.pe/bitstreams/522c868a-0d87-47b4-9ff4-7c6055bab151/download
bitstream.checksum.fl_str_mv 6095842654a1eb58b07d890dcff3e666
3cd85d839bd22f7e02e8c719932996d9
ac3a24a3a0d04fb184209e344d1b6333
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175816699707392
spelling Publicationrp07661600rp07674600rp07669600rp07665600rp07671600rp07660600rp07666600rp07668600rp07672600rp07667600rp07664600rp07673600rp07670600Torro, LisardCazorla, MalenaCaries Melgarejo, JoanCamprubi, AntoniTarres, MartaGemmrich, LauraCampeny, MarcArtiaga, DavidTorres, BelenMartinez, AlvaroMollinedo, DivaAlfonso, PuraArce-Burgoa, Osvaldo R.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2826https://doi.org/10.3390/min9100604A volcanic dome complex of Miocene age hosts the In-bearing animas-Chocaya-Siete Suyos district in SW Bolivia. Ore mineralization occurs as banded and massive infillings in sub-vertical, NE-SW striking veins. In this article, a detailed petrographic study is combined with in situ mineral geochemistry determinations in ore from the Arturo, Chorro and Diez veins in the Siete Suyos mine, the animas, Burton, Colorada, and Rosario veins in the animas mine and the Nueva vein in the Chocaya mine. A three-stage paragenetic sequence is roughly determined for all of them, and includes (1) an early low-sulfidation stage that is dominated by cassiterite, pyrrhotite, arsenopyrite, and high-Fe sphalerite (FeS > 21 mol. %); (2) a second intermediate-sulfidation stage dominated by pyrite + marcasite +/- intermediate product, sphalerite (FeS < 21 mol. %), stannite, and local famatinite; and, (3) a late intermediate-sulfidation stage dominated by galena and Ag-Pb-Sn sulfosalts. Electron-probe microanalyses reveal high indium enrichment in stage-2 sphalerite (up to 9.66 wt.% In) and stannite (up to 4.11 wt.% In), and a moderate enrichment in rare wurtzite (up to 1.61 wt.% In), stage-1 sphalerite (0.35 wt.% In), cassiterite (up to 0.25 wt.% In2O3), and ramdohrite (up to 0.24 wt.% In). Therefore, the main indium mineralization in the district can be associated to the second, intermediate-sulfidation stage, chiefly in those veins in which sphalerite and stannite are more abundant. Atomic concentrations of In and Cu in sphalerite yield a positive correlation at Cu/In = 1 that agrees with a (Cu+ + In3+) <-> 2Zn(2+) coupled substitution. The availability of Cu in the mineralizing fluids during the crystallization of sphalerite is, in consequence, essential for the incorporation of indium in its crystal lattice and would control the distribution of indium enrichment at different scales. The highest concentrations of indium in sphalerite, which is found in the Diez vein in the Siete Suyos mine, occur in crustiform bands of sphalerite with local chalcopyrite disease texture, which has not been observed in the other studied veins. In stannite, the atomic concentrations of In are negatively correlated with those of Cu and Sn at Cu + In = 2 and Sn + In = 1. Thus, atomic proportions and correlations suggest the contextualization of the main indium mineralization in the sphalerite-stannite-roquesite pseudoternary system.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengMDPI AGMINERALSinfo:eu-repo/semantics/openAccessGeotechnical Engineering and Engineering GeologyGeology-1http://purl.org/pe-repo/ocde/ford#1.05.02-1Indium Mineralization in the Volcanic Dome-Hosted Animas-Chocaya-Siete Suyos Polymetallic Deposit, Potosi, Boliviainfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALIndium Mineralization in the Volcanic Dome-Hosted.pdfIndium Mineralization in the Volcanic Dome-Hosted.pdfapplication/pdf67685554https://repositorio.concytec.gob.pe/bitstreams/29ddd078-6d62-43d7-9aeb-ab5fe1638fcc/download6095842654a1eb58b07d890dcff3e666MD51TEXTIndium Mineralization in the Volcanic Dome-Hosted.pdf.txtIndium Mineralization in the Volcanic Dome-Hosted.pdf.txtExtracted texttext/plain159030https://repositorio.concytec.gob.pe/bitstreams/70a998da-5644-4927-beb2-d82dced10fa2/download3cd85d839bd22f7e02e8c719932996d9MD52THUMBNAILIndium Mineralization in the Volcanic Dome-Hosted.pdf.jpgIndium Mineralization in the Volcanic Dome-Hosted.pdf.jpgGenerated Thumbnailimage/jpeg5540https://repositorio.concytec.gob.pe/bitstreams/522c868a-0d87-47b4-9ff4-7c6055bab151/downloadac3a24a3a0d04fb184209e344d1b6333MD5320.500.12390/2826oai:repositorio.concytec.gob.pe:20.500.12390/28262025-01-20 22:00:51.0http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="f21aa02f-6922-42b9-9032-f858dd07ef6a"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Indium Mineralization in the Volcanic Dome-Hosted Animas-Chocaya-Siete Suyos Polymetallic Deposit, Potosi, Bolivia</Title> <PublishedIn> <Publication> <Title>MINERALS</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.3390/min9100604</DOI> <Authors> <Author> <DisplayName>Torro, Lisard</DisplayName> <Person id="rp07661" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cazorla, Malena</DisplayName> <Person id="rp07674" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Caries Melgarejo, Joan</DisplayName> <Person id="rp07669" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Camprubi, Antoni</DisplayName> <Person id="rp07665" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Tarres, Marta</DisplayName> <Person id="rp07671" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gemmrich, Laura</DisplayName> <Person id="rp07660" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Campeny, Marc</DisplayName> <Person id="rp07666" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Artiaga, David</DisplayName> <Person id="rp07668" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Torres, Belen</DisplayName> <Person id="rp07672" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Martinez, Alvaro</DisplayName> <Person id="rp07667" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mollinedo, Diva</DisplayName> <Person id="rp07664" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Alfonso, Pura</DisplayName> <Person id="rp07673" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Arce-Burgoa, Osvaldo R.</DisplayName> <Person id="rp07670" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>MDPI AG</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Geotechnical Engineering and Engineering Geology</Keyword> <Keyword>Geology</Keyword> <Abstract>A volcanic dome complex of Miocene age hosts the In-bearing animas-Chocaya-Siete Suyos district in SW Bolivia. Ore mineralization occurs as banded and massive infillings in sub-vertical, NE-SW striking veins. In this article, a detailed petrographic study is combined with in situ mineral geochemistry determinations in ore from the Arturo, Chorro and Diez veins in the Siete Suyos mine, the animas, Burton, Colorada, and Rosario veins in the animas mine and the Nueva vein in the Chocaya mine. A three-stage paragenetic sequence is roughly determined for all of them, and includes (1) an early low-sulfidation stage that is dominated by cassiterite, pyrrhotite, arsenopyrite, and high-Fe sphalerite (FeS &gt; 21 mol. %); (2) a second intermediate-sulfidation stage dominated by pyrite + marcasite +/- intermediate product, sphalerite (FeS &lt; 21 mol. %), stannite, and local famatinite; and, (3) a late intermediate-sulfidation stage dominated by galena and Ag-Pb-Sn sulfosalts. Electron-probe microanalyses reveal high indium enrichment in stage-2 sphalerite (up to 9.66 wt.% In) and stannite (up to 4.11 wt.% In), and a moderate enrichment in rare wurtzite (up to 1.61 wt.% In), stage-1 sphalerite (0.35 wt.% In), cassiterite (up to 0.25 wt.% In2O3), and ramdohrite (up to 0.24 wt.% In). Therefore, the main indium mineralization in the district can be associated to the second, intermediate-sulfidation stage, chiefly in those veins in which sphalerite and stannite are more abundant. Atomic concentrations of In and Cu in sphalerite yield a positive correlation at Cu/In = 1 that agrees with a (Cu+ + In3+) &lt;-&gt; 2Zn(2+) coupled substitution. The availability of Cu in the mineralizing fluids during the crystallization of sphalerite is, in consequence, essential for the incorporation of indium in its crystal lattice and would control the distribution of indium enrichment at different scales. The highest concentrations of indium in sphalerite, which is found in the Diez vein in the Siete Suyos mine, occur in crustiform bands of sphalerite with local chalcopyrite disease texture, which has not been observed in the other studied veins. In stannite, the atomic concentrations of In are negatively correlated with those of Cu and Sn at Cu + In = 2 and Sn + In = 1. Thus, atomic proportions and correlations suggest the contextualization of the main indium mineralization in the sphalerite-stannite-roquesite pseudoternary system.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).