Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering

Descripción del Articulo

L.M.S. thanks to the International Max Planck Research School Dynamical processes in atoms, molecules and solids and the Deutscher Akademischer Austauschdienst(DAAD) for the financial support. G.C.S. and C.V.L. are grateful to National Council of Science and Technology (CONCYTEC) from Peru for the f...

Descripción completa

Detalles Bibliográficos
Autores: Medrano Sandonas L., Cuba-Supanta G., Gutierrez R., Dianat A., Landauro C.V., Cuniberti G.
Formato: artículo
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/591
Enlace del recurso:https://hdl.handle.net/20.500.12390/591
https://doi.org/10.1016/j.carbon.2017.09.025
Nivel de acceso:acceso abierto
Materia:Transportation routes
Deposition
Graphene
Interfaces (materials)
Molecular dynamics
Nanoribbons
Silica
Silicon
Silicon carbide
Substrates
Transport properties
Interface thermal resistance
Non equilibrium molecular dynamic (NEMD)
Rectification factors
Structural asymmetry
Substrate engineering
Substrate temperature
Thermal transport
Thermal transport properties
Heterojunctions
https://purl.org/pe-repo/ocde/ford#2.07.00
id CONC_b22778bb4e3a73abf17a4329d73f00ea
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/591
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering
title Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering
spellingShingle Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering
Medrano Sandonas L.
Transportation routes
Deposition
Graphene
Interfaces (materials)
Molecular dynamics
Nanoribbons
Silica
Silicon
Silicon carbide
Substrates
Transport properties
Interface thermal resistance
Non equilibrium molecular dynamic (NEMD)
Rectification factors
Structural asymmetry
Substrate engineering
Substrate temperature
Thermal transport
Thermal transport properties
Heterojunctions
https://purl.org/pe-repo/ocde/ford#2.07.00
title_short Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering
title_full Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering
title_fullStr Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering
title_full_unstemmed Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering
title_sort Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering
author Medrano Sandonas L.
author_facet Medrano Sandonas L.
Cuba-Supanta G.
Gutierrez R.
Dianat A.
Landauro C.V.
Cuniberti G.
author_role author
author2 Cuba-Supanta G.
Gutierrez R.
Dianat A.
Landauro C.V.
Cuniberti G.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Medrano Sandonas L.
Cuba-Supanta G.
Gutierrez R.
Dianat A.
Landauro C.V.
Cuniberti G.
dc.subject.none.fl_str_mv Transportation routes
topic Transportation routes
Deposition
Graphene
Interfaces (materials)
Molecular dynamics
Nanoribbons
Silica
Silicon
Silicon carbide
Substrates
Transport properties
Interface thermal resistance
Non equilibrium molecular dynamic (NEMD)
Rectification factors
Structural asymmetry
Substrate engineering
Substrate temperature
Thermal transport
Thermal transport properties
Heterojunctions
https://purl.org/pe-repo/ocde/ford#2.07.00
dc.subject.es_PE.fl_str_mv Deposition
Graphene
Interfaces (materials)
Molecular dynamics
Nanoribbons
Silica
Silicon
Silicon carbide
Substrates
Transport properties
Interface thermal resistance
Non equilibrium molecular dynamic (NEMD)
Rectification factors
Structural asymmetry
Substrate engineering
Substrate temperature
Thermal transport
Thermal transport properties
Heterojunctions
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.07.00
description L.M.S. thanks to the International Max Planck Research School Dynamical processes in atoms, molecules and solids and the Deutscher Akademischer Austauschdienst(DAAD) for the financial support. G.C.S. and C.V.L. are grateful to National Council of Science and Technology (CONCYTEC) from Peru for the financial support through the Doctoral Program for Peruvian Universities (Nº 218-2014-CONCYTEC) and the Peruvian Excellence Center Program, respectively. This work has also been partly supported by the German Research Foundation(DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden”. We acknowledge the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for computational resources.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/591
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.carbon.2017.09.025
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85029426712
url https://hdl.handle.net/20.500.12390/591
https://doi.org/10.1016/j.carbon.2017.09.025
identifier_str_mv 2-s2.0-85029426712
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Carbon
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883070383030272
spelling Publicationrp01164600rp00836500rp00595500rp01162600rp00840500rp01163600Medrano Sandonas L.Cuba-Supanta G.Gutierrez R.Dianat A.Landauro C.V.Cuniberti G.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/591https://doi.org/10.1016/j.carbon.2017.09.0252-s2.0-85029426712L.M.S. thanks to the International Max Planck Research School Dynamical processes in atoms, molecules and solids and the Deutscher Akademischer Austauschdienst(DAAD) for the financial support. G.C.S. and C.V.L. are grateful to National Council of Science and Technology (CONCYTEC) from Peru for the financial support through the Doctoral Program for Peruvian Universities (Nº 218-2014-CONCYTEC) and the Peruvian Excellence Center Program, respectively. This work has also been partly supported by the German Research Foundation(DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden”. We acknowledge the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for computational resources.Two-dimensional heterostructures offer a new route to manipulate phonons at the nanoscale. By performing non-equilibrium molecular dynamics simulations we address the thermal transport properties of structurally asymmetric graphene/hBN nanoribbon heterojunctions deposited on several substrates: graphite, Si(100), SiC(0001), and SiO2. Our results show a reduction of the interface thermal resistance in coplanar G/hBN heterojunctions upon substrate deposition which is mainly related to the increment on the power spectrum overlap. This effect is more pronounced for deposition on Si(100) and SiO2 substrates, independently of the planar stacking order of the materials. Moreover, it has been found that the thermal rectification factor increases as a function of the degree of structural asymmetry for hBN-G nanoribbons, reaching values up to 24%, while it displays a minimum () for G-hBN nanoribbons. More importantly, these properties can also be tuned by varying the substrate temperature, e.g., thermal rectification of symmetric hBN-G nanoribbon is enhanced from 8.8% to 79% by reducing the temperature of Si(100) substrate. Our investigation yields new insights into the physical mechanisms governing heat transport in G/hBN heterojunctions, and thus opens potential new routes to the design of phononic devices.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier LtdCarboninfo:eu-repo/semantics/openAccessTransportation routesDeposition-1Graphene-1Interfaces (materials)-1Molecular dynamics-1Nanoribbons-1Silica-1Silicon-1Silicon carbide-1Substrates-1Transport properties-1Interface thermal resistance-1Non equilibrium molecular dynamic (NEMD)-1Rectification factors-1Structural asymmetry-1Substrate engineering-1Substrate temperature-1Thermal transport-1Thermal transport properties-1Heterojunctions-1https://purl.org/pe-repo/ocde/ford#2.07.00-1Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineeringinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/591oai:repositorio.concytec.gob.pe:20.500.12390/5912024-05-30 15:22:19.503http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2c4e46a4-5947-4c81-8db3-affb200413c9"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering</Title> <PublishedIn> <Publication> <Title>Carbon</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1016/j.carbon.2017.09.025</DOI> <SCP-Number>2-s2.0-85029426712</SCP-Number> <Authors> <Author> <DisplayName>Medrano Sandonas L.</DisplayName> <Person id="rp01164" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cuba-Supanta G.</DisplayName> <Person id="rp00836" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gutierrez R.</DisplayName> <Person id="rp00595" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Dianat A.</DisplayName> <Person id="rp01162" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Landauro C.V.</DisplayName> <Person id="rp00840" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cuniberti G.</DisplayName> <Person id="rp01163" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Transportation routes</Keyword> <Keyword>Deposition</Keyword> <Keyword>Graphene</Keyword> <Keyword>Interfaces (materials)</Keyword> <Keyword>Molecular dynamics</Keyword> <Keyword>Nanoribbons</Keyword> <Keyword>Silica</Keyword> <Keyword>Silicon</Keyword> <Keyword>Silicon carbide</Keyword> <Keyword>Substrates</Keyword> <Keyword>Transport properties</Keyword> <Keyword>Interface thermal resistance</Keyword> <Keyword>Non equilibrium molecular dynamic (NEMD)</Keyword> <Keyword>Rectification factors</Keyword> <Keyword>Structural asymmetry</Keyword> <Keyword>Substrate engineering</Keyword> <Keyword>Substrate temperature</Keyword> <Keyword>Thermal transport</Keyword> <Keyword>Thermal transport properties</Keyword> <Keyword>Heterojunctions</Keyword> <Abstract>Two-dimensional heterostructures offer a new route to manipulate phonons at the nanoscale. By performing non-equilibrium molecular dynamics simulations we address the thermal transport properties of structurally asymmetric graphene/hBN nanoribbon heterojunctions deposited on several substrates: graphite, Si(100), SiC(0001), and SiO2. Our results show a reduction of the interface thermal resistance in coplanar G/hBN heterojunctions upon substrate deposition which is mainly related to the increment on the power spectrum overlap. This effect is more pronounced for deposition on Si(100) and SiO2 substrates, independently of the planar stacking order of the materials. Moreover, it has been found that the thermal rectification factor increases as a function of the degree of structural asymmetry for hBN-G nanoribbons, reaching values up to 24%, while it displays a minimum () for G-hBN nanoribbons. More importantly, these properties can also be tuned by varying the substrate temperature, e.g., thermal rectification of symmetric hBN-G nanoribbon is enhanced from 8.8% to 79% by reducing the temperature of Si(100) substrate. Our investigation yields new insights into the physical mechanisms governing heat transport in G/hBN heterojunctions, and thus opens potential new routes to the design of phononic devices.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.457506
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).