Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
Descripción del Articulo
The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The eva...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2018 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1068 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1068 https://doi.org/10.3390/atmos9090362 |
Nivel de acceso: | acceso abierto |
Materia: | Precipitación Meteorología y ciencias atmosféricas https://purl.org/pe-repo/ocde/ford#1.05.09 |
id |
CONC_ad8d2257bba435ad5dcf0ddbcc599774 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1068 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru |
title |
Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru |
spellingShingle |
Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru Moya-Alvarez, AS Precipitación Meteorología y ciencias atmosféricas https://purl.org/pe-repo/ocde/ford#1.05.09 |
title_short |
Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru |
title_full |
Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru |
title_fullStr |
Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru |
title_full_unstemmed |
Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru |
title_sort |
Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru |
author |
Moya-Alvarez, AS |
author_facet |
Moya-Alvarez, AS Galvez, J Holguin, A Estevan, R Kumar, S Villalobos, E Martinez-Castro, D Silva, Y |
author_role |
author |
author2 |
Galvez, J Holguin, A Estevan, R Kumar, S Villalobos, E Martinez-Castro, D Silva, Y |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Moya-Alvarez, AS Galvez, J Holguin, A Estevan, R Kumar, S Villalobos, E Martinez-Castro, D Silva, Y |
dc.subject.none.fl_str_mv |
Precipitación |
topic |
Precipitación Meteorología y ciencias atmosféricas https://purl.org/pe-repo/ocde/ford#1.05.09 |
dc.subject.es_PE.fl_str_mv |
Meteorología y ciencias atmosféricas |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.09 |
description |
The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The evaluation analyzes the synoptic conditions averaged over 40 extreme event cases, and considers model simulations organized in 4 nested domains. Simulation results show that the Weather Research and Forecasting (WRF) model underestimates rainfall totals in approximately 50–60% of cases. The analysis of two case studies shows that the underestimation by the model is probably due to three reasons: inability to generate convection in the upstream Amazon during early morning hours, limitations on describing mesoscale processes that lead to vertical movements capable of producing extreme rainfall, and limitations on the microphysics scheme to generate heavy rainfall. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1068 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/atmos9090362 |
dc.identifier.isi.none.fl_str_mv |
448137500037 |
url |
https://hdl.handle.net/20.500.12390/1068 https://doi.org/10.3390/atmos9090362 |
identifier_str_mv |
448137500037 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Atmosphere |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175490496102400 |
spelling |
Publicationrp02140500rp03031600rp03030600rp03028600rp02144500rp03029600rp02387500rp02386500Moya-Alvarez, ASGalvez, JHolguin, AEstevan, RKumar, SVillalobos, EMartinez-Castro, DSilva, Y2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/1068https://doi.org/10.3390/atmos9090362448137500037The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The evaluation analyzes the synoptic conditions averaged over 40 extreme event cases, and considers model simulations organized in 4 nested domains. Simulation results show that the Weather Research and Forecasting (WRF) model underestimates rainfall totals in approximately 50–60% of cases. The analysis of two case studies shows that the underestimation by the model is probably due to three reasons: inability to generate convection in the upstream Amazon during early morning hours, limitations on describing mesoscale processes that lead to vertical movements capable of producing extreme rainfall, and limitations on the microphysics scheme to generate heavy rainfall.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengMultidisciplinary Digital Publishing Institute (MDPI)Atmosphereinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/PrecipitaciónMeteorología y ciencias atmosféricas-1https://purl.org/pe-repo/ocde/ford#1.05.09-1Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peruinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1068oai:repositorio.concytec.gob.pe:20.500.12390/10682024-05-30 16:00:54.187https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="335c01d2-1942-40ee-b14d-3fe212c5d063"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru</Title> <PublishedIn> <Publication> <Title>Atmosphere</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.3390/atmos9090362</DOI> <ISI-Number>448137500037</ISI-Number> <Authors> <Author> <DisplayName>Moya-Alvarez, AS</DisplayName> <Person id="rp02140" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Galvez, J</DisplayName> <Person id="rp03031" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Holguin, A</DisplayName> <Person id="rp03030" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Estevan, R</DisplayName> <Person id="rp03028" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kumar, S</DisplayName> <Person id="rp02144" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villalobos, E</DisplayName> <Person id="rp03029" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Martinez-Castro, D</DisplayName> <Person id="rp02387" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Silva, Y</DisplayName> <Person id="rp02386" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Multidisciplinary Digital Publishing Institute (MDPI)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Precipitación</Keyword> <Keyword>Meteorología y ciencias atmosféricas</Keyword> <Abstract>The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The evaluation analyzes the synoptic conditions averaged over 40 extreme event cases, and considers model simulations organized in 4 nested domains. Simulation results show that the Weather Research and Forecasting (WRF) model underestimates rainfall totals in approximately 50–60% of cases. The analysis of two case studies shows that the underestimation by the model is probably due to three reasons: inability to generate convection in the upstream Amazon during early morning hours, limitations on describing mesoscale processes that lead to vertical movements capable of producing extreme rainfall, and limitations on the microphysics scheme to generate heavy rainfall.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.243791 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).