Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru

Descripción del Articulo

The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The eva...

Descripción completa

Detalles Bibliográficos
Autores: Moya-Alvarez, AS, Galvez, J, Holguin, A, Estevan, R, Kumar, S, Villalobos, E, Martinez-Castro, D, Silva, Y
Formato: artículo
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1068
Enlace del recurso:https://hdl.handle.net/20.500.12390/1068
https://doi.org/10.3390/atmos9090362
Nivel de acceso:acceso abierto
Materia:Precipitación
Meteorología y ciencias atmosféricas
https://purl.org/pe-repo/ocde/ford#1.05.09
id CONC_ad8d2257bba435ad5dcf0ddbcc599774
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1068
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
title Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
spellingShingle Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
Moya-Alvarez, AS
Precipitación
Meteorología y ciencias atmosféricas
https://purl.org/pe-repo/ocde/ford#1.05.09
title_short Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
title_full Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
title_fullStr Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
title_full_unstemmed Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
title_sort Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
author Moya-Alvarez, AS
author_facet Moya-Alvarez, AS
Galvez, J
Holguin, A
Estevan, R
Kumar, S
Villalobos, E
Martinez-Castro, D
Silva, Y
author_role author
author2 Galvez, J
Holguin, A
Estevan, R
Kumar, S
Villalobos, E
Martinez-Castro, D
Silva, Y
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Moya-Alvarez, AS
Galvez, J
Holguin, A
Estevan, R
Kumar, S
Villalobos, E
Martinez-Castro, D
Silva, Y
dc.subject.none.fl_str_mv Precipitación
topic Precipitación
Meteorología y ciencias atmosféricas
https://purl.org/pe-repo/ocde/ford#1.05.09
dc.subject.es_PE.fl_str_mv Meteorología y ciencias atmosféricas
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.09
description The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The evaluation analyzes the synoptic conditions averaged over 40 extreme event cases, and considers model simulations organized in 4 nested domains. Simulation results show that the Weather Research and Forecasting (WRF) model underestimates rainfall totals in approximately 50–60% of cases. The analysis of two case studies shows that the underestimation by the model is probably due to three reasons: inability to generate convection in the upstream Amazon during early morning hours, limitations on describing mesoscale processes that lead to vertical movements capable of producing extreme rainfall, and limitations on the microphysics scheme to generate heavy rainfall.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1068
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/atmos9090362
dc.identifier.isi.none.fl_str_mv 448137500037
url https://hdl.handle.net/20.500.12390/1068
https://doi.org/10.3390/atmos9090362
identifier_str_mv 448137500037
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Atmosphere
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175490496102400
spelling Publicationrp02140500rp03031600rp03030600rp03028600rp02144500rp03029600rp02387500rp02386500Moya-Alvarez, ASGalvez, JHolguin, AEstevan, RKumar, SVillalobos, EMartinez-Castro, DSilva, Y2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/1068https://doi.org/10.3390/atmos9090362448137500037The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The evaluation analyzes the synoptic conditions averaged over 40 extreme event cases, and considers model simulations organized in 4 nested domains. Simulation results show that the Weather Research and Forecasting (WRF) model underestimates rainfall totals in approximately 50–60% of cases. The analysis of two case studies shows that the underestimation by the model is probably due to three reasons: inability to generate convection in the upstream Amazon during early morning hours, limitations on describing mesoscale processes that lead to vertical movements capable of producing extreme rainfall, and limitations on the microphysics scheme to generate heavy rainfall.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengMultidisciplinary Digital Publishing Institute (MDPI)Atmosphereinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/PrecipitaciónMeteorología y ciencias atmosféricas-1https://purl.org/pe-repo/ocde/ford#1.05.09-1Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peruinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1068oai:repositorio.concytec.gob.pe:20.500.12390/10682024-05-30 16:00:54.187https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="335c01d2-1942-40ee-b14d-3fe212c5d063"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru</Title> <PublishedIn> <Publication> <Title>Atmosphere</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.3390/atmos9090362</DOI> <ISI-Number>448137500037</ISI-Number> <Authors> <Author> <DisplayName>Moya-Alvarez, AS</DisplayName> <Person id="rp02140" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Galvez, J</DisplayName> <Person id="rp03031" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Holguin, A</DisplayName> <Person id="rp03030" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Estevan, R</DisplayName> <Person id="rp03028" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kumar, S</DisplayName> <Person id="rp02144" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villalobos, E</DisplayName> <Person id="rp03029" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Martinez-Castro, D</DisplayName> <Person id="rp02387" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Silva, Y</DisplayName> <Person id="rp02386" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Multidisciplinary Digital Publishing Institute (MDPI)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Precipitación</Keyword> <Keyword>Meteorología y ciencias atmosféricas</Keyword> <Abstract>The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The evaluation analyzes the synoptic conditions averaged over 40 extreme event cases, and considers model simulations organized in 4 nested domains. Simulation results show that the Weather Research and Forecasting (WRF) model underestimates rainfall totals in approximately 50–60% of cases. The analysis of two case studies shows that the underestimation by the model is probably due to three reasons: inability to generate convection in the upstream Amazon during early morning hours, limitations on describing mesoscale processes that lead to vertical movements capable of producing extreme rainfall, and limitations on the microphysics scheme to generate heavy rainfall.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.243791
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).