Un método radial interactivo para la exploración visual de datos en alta dimensión
Descripción del Articulo
El tratamiento y descubrimiento de patrones en conjuntos de datos despierta gran interés en la comunidad de investigadores. Específicamente, en el manejo de datos multidimensionales se han realizado grandes avances. Sin embargo, todavía existen ciertas limitaciones como el costo computacional y la i...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2017 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1950 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1950 |
Nivel de acceso: | acceso abierto |
Materia: | Visualización de información Datos multidimensionales Star coordinates https://purl.org/pe-repo/ocde/ford#1.02.01 |
id |
CONC_abacb30409a97a5245cb72f9d147c9de |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1950 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Un método radial interactivo para la exploración visual de datos en alta dimensión |
title |
Un método radial interactivo para la exploración visual de datos en alta dimensión |
spellingShingle |
Un método radial interactivo para la exploración visual de datos en alta dimensión García Zanabria, Germain Visualización de información Datos multidimensionales Star coordinates https://purl.org/pe-repo/ocde/ford#1.02.01 |
title_short |
Un método radial interactivo para la exploración visual de datos en alta dimensión |
title_full |
Un método radial interactivo para la exploración visual de datos en alta dimensión |
title_fullStr |
Un método radial interactivo para la exploración visual de datos en alta dimensión |
title_full_unstemmed |
Un método radial interactivo para la exploración visual de datos en alta dimensión |
title_sort |
Un método radial interactivo para la exploración visual de datos en alta dimensión |
author |
García Zanabria, Germain |
author_facet |
García Zanabria, Germain |
author_role |
author |
dc.contributor.author.fl_str_mv |
García Zanabria, Germain |
dc.subject.none.fl_str_mv |
Visualización de información |
topic |
Visualización de información Datos multidimensionales Star coordinates https://purl.org/pe-repo/ocde/ford#1.02.01 |
dc.subject.es_PE.fl_str_mv |
Datos multidimensionales Star coordinates |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
description |
El tratamiento y descubrimiento de patrones en conjuntos de datos despierta gran interés en la comunidad de investigadores. Específicamente, en el manejo de datos multidimensionales se han realizado grandes avances. Sin embargo, todavía existen ciertas limitaciones como el costo computacional y la interacción con el usuario que impiden que la tarea de extracción de información sea simple y eficiente a la vez. Una técnica que mitiga estos dos problemas es Star Coordinates, método de visualización capaz de revelar patrones y grupos de datos multidimensionales mientras muestra el impacto de los atributos en la formación de la representación de los datos. A pesar de su utilidad, Star Coordinates tiene ciertos inconvenientes que impiden su uso en varios escenarios. Por ejemplo, cuando el número de dimensiones de los datos es realmente alto, las visualizaciones resultantes se vuelven desordenadas, lo que dificulta el análisis de la importancia de los atributos en la formación de grupos y/o patrones. En esta tesis proponemos iStar. Un nuevo método basado en Star Coordinates, para el análisis de datos en alta dimensión. El método propuesto se cimienta en el agrupamiento (basado en PCA, Centroides y Varianza) y reordenamiento de atributos (basado en Métricas y Similaridad) con el fin de mitigar la distorsión visual. El agrupamiento y reordenamiento se puede realizar de forma automática, así como de forma interactiva, lo que permite que el usuario pueda analizar aún más el impacto de los atributos en la visualización radial. La eficacia de nuestro enfoque se muestra a través de una serie de experimentos y estudios de casos, los cuales muestran evidencia de la utilidad del método propuesto. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1950 |
url |
https://hdl.handle.net/20.500.12390/1950 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.publisher.none.fl_str_mv |
Universidad Católica San Pablo |
publisher.none.fl_str_mv |
Universidad Católica San Pablo |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175513651806208 |
spelling |
Publicationrp04970600García Zanabria, Germain2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/1950El tratamiento y descubrimiento de patrones en conjuntos de datos despierta gran interés en la comunidad de investigadores. Específicamente, en el manejo de datos multidimensionales se han realizado grandes avances. Sin embargo, todavía existen ciertas limitaciones como el costo computacional y la interacción con el usuario que impiden que la tarea de extracción de información sea simple y eficiente a la vez. Una técnica que mitiga estos dos problemas es Star Coordinates, método de visualización capaz de revelar patrones y grupos de datos multidimensionales mientras muestra el impacto de los atributos en la formación de la representación de los datos. A pesar de su utilidad, Star Coordinates tiene ciertos inconvenientes que impiden su uso en varios escenarios. Por ejemplo, cuando el número de dimensiones de los datos es realmente alto, las visualizaciones resultantes se vuelven desordenadas, lo que dificulta el análisis de la importancia de los atributos en la formación de grupos y/o patrones. En esta tesis proponemos iStar. Un nuevo método basado en Star Coordinates, para el análisis de datos en alta dimensión. El método propuesto se cimienta en el agrupamiento (basado en PCA, Centroides y Varianza) y reordenamiento de atributos (basado en Métricas y Similaridad) con el fin de mitigar la distorsión visual. El agrupamiento y reordenamiento se puede realizar de forma automática, así como de forma interactiva, lo que permite que el usuario pueda analizar aún más el impacto de los atributos en la visualización radial. La eficacia de nuestro enfoque se muestra a través de una serie de experimentos y estudios de casos, los cuales muestran evidencia de la utilidad del método propuesto.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecspaUniversidad Católica San Pabloinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Visualización de informaciónDatos multidimensionales-1Star coordinates-1https://purl.org/pe-repo/ocde/ford#1.02.01-1Un método radial interactivo para la exploración visual de datos en alta dimensióninfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1950oai:repositorio.concytec.gob.pe:20.500.12390/19502024-05-30 15:41:18.825http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="40e57aed-fa3a-41c4-85bc-a3b2eac32f7d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Un método radial interactivo para la exploración visual de datos en alta dimensión</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <Authors> <Author> <DisplayName>García Zanabria, Germain</DisplayName> <Person id="rp04970" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Universidad Católica San Pablo</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>Visualización de información</Keyword> <Keyword>Datos multidimensionales</Keyword> <Keyword>Star coordinates</Keyword> <Abstract>El tratamiento y descubrimiento de patrones en conjuntos de datos despierta gran interés en la comunidad de investigadores. Específicamente, en el manejo de datos multidimensionales se han realizado grandes avances. Sin embargo, todavía existen ciertas limitaciones como el costo computacional y la interacción con el usuario que impiden que la tarea de extracción de información sea simple y eficiente a la vez. Una técnica que mitiga estos dos problemas es Star Coordinates, método de visualización capaz de revelar patrones y grupos de datos multidimensionales mientras muestra el impacto de los atributos en la formación de la representación de los datos. A pesar de su utilidad, Star Coordinates tiene ciertos inconvenientes que impiden su uso en varios escenarios. Por ejemplo, cuando el número de dimensiones de los datos es realmente alto, las visualizaciones resultantes se vuelven desordenadas, lo que dificulta el análisis de la importancia de los atributos en la formación de grupos y/o patrones. En esta tesis proponemos iStar. Un nuevo método basado en Star Coordinates, para el análisis de datos en alta dimensión. El método propuesto se cimienta en el agrupamiento (basado en PCA, Centroides y Varianza) y reordenamiento de atributos (basado en Métricas y Similaridad) con el fin de mitigar la distorsión visual. El agrupamiento y reordenamiento se puede realizar de forma automática, así como de forma interactiva, lo que permite que el usuario pueda analizar aún más el impacto de los atributos en la visualización radial. La eficacia de nuestro enfoque se muestra a través de una serie de experimentos y estudios de casos, los cuales muestran evidencia de la utilidad del método propuesto.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.461011 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).