Bivariant K-theory of generalized Weyl algebras
Descripción del Articulo
        We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factor...
              
            
    
                        | Autores: | , | 
|---|---|
| Formato: | artículo | 
| Fecha de Publicación: | 2020 | 
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación | 
| Repositorio: | CONCYTEC-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2642 | 
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2642 https://doi.org/10.4171/JNCG/375 | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Smooth generalized crossed products Generalized Weyl algebras K-theory Kk-theory http://purl.org/pe-repo/ocde/ford#1.01.01 | 
| id | CONC_9c374e794665434b49de093ad4bc34d2 | 
|---|---|
| oai_identifier_str | oai:repositorio.concytec.gob.pe:20.500.12390/2642 | 
| network_acronym_str | CONC | 
| network_name_str | CONCYTEC-Institucional | 
| repository_id_str | 4689 | 
| spelling | Publicationrp06821600rp06822600Gutiérrez J.Valqui C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2642https://doi.org/10.4171/JNCG/3752-s2.0-85091630103We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factors Bλ of U.sl2/ and the quantum weighted projective lines O.W Pq.k; l//. © European Mathematical SocietyFondo Nacional de Desarrollo Científico y Tecnológico - FondecytengEuropean Mathematical Society Publishing HouseJournal of Noncommutative Geometryinfo:eu-repo/semantics/openAccessSmooth generalized crossed productsGeneralized Weyl algebras-1K-theory-1Kk-theory-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Bivariant K-theory of generalized Weyl algebrasinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2642oai:repositorio.concytec.gob.pe:20.500.12390/26422024-05-30 15:25:13.511http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="83048170-6338-4213-a591-d527b775f297"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Bivariant K-theory of generalized Weyl algebras</Title> <PublishedIn> <Publication> <Title>Journal of Noncommutative Geometry</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.4171/JNCG/375</DOI> <SCP-Number>2-s2.0-85091630103</SCP-Number> <Authors> <Author> <DisplayName>Gutiérrez J.</DisplayName> <Person id="rp06821" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Valqui C.</DisplayName> <Person id="rp06822" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>European Mathematical Society Publishing House</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Smooth generalized crossed products</Keyword> <Keyword>Generalized Weyl algebras</Keyword> <Keyword>K-theory</Keyword> <Keyword>Kk-theory</Keyword> <Abstract>We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factors Bλ of U.sl2/ and the quantum weighted projective lines O.W Pq.k; l//. © European Mathematical Society</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 | 
| dc.title.none.fl_str_mv | Bivariant K-theory of generalized Weyl algebras | 
| title | Bivariant K-theory of generalized Weyl algebras | 
| spellingShingle | Bivariant K-theory of generalized Weyl algebras Gutiérrez J. Smooth generalized crossed products Generalized Weyl algebras K-theory Kk-theory http://purl.org/pe-repo/ocde/ford#1.01.01 | 
| title_short | Bivariant K-theory of generalized Weyl algebras | 
| title_full | Bivariant K-theory of generalized Weyl algebras | 
| title_fullStr | Bivariant K-theory of generalized Weyl algebras | 
| title_full_unstemmed | Bivariant K-theory of generalized Weyl algebras | 
| title_sort | Bivariant K-theory of generalized Weyl algebras | 
| author | Gutiérrez J. | 
| author_facet | Gutiérrez J. Valqui C. | 
| author_role | author | 
| author2 | Valqui C. | 
| author2_role | author | 
| dc.contributor.author.fl_str_mv | Gutiérrez J. Valqui C. | 
| dc.subject.none.fl_str_mv | Smooth generalized crossed products | 
| topic | Smooth generalized crossed products Generalized Weyl algebras K-theory Kk-theory http://purl.org/pe-repo/ocde/ford#1.01.01 | 
| dc.subject.es_PE.fl_str_mv | Generalized Weyl algebras K-theory Kk-theory | 
| dc.subject.ocde.none.fl_str_mv | http://purl.org/pe-repo/ocde/ford#1.01.01 | 
| description | We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factors Bλ of U.sl2/ and the quantum weighted projective lines O.W Pq.k; l//. © European Mathematical Society | 
| publishDate | 2020 | 
| dc.date.accessioned.none.fl_str_mv | 2024-05-30T23:13:38Z | 
| dc.date.available.none.fl_str_mv | 2024-05-30T23:13:38Z | 
| dc.date.issued.fl_str_mv | 2020 | 
| dc.type.none.fl_str_mv | info:eu-repo/semantics/article | 
| format | article | 
| dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12390/2642 | 
| dc.identifier.doi.none.fl_str_mv | https://doi.org/10.4171/JNCG/375 | 
| dc.identifier.scopus.none.fl_str_mv | 2-s2.0-85091630103 | 
| url | https://hdl.handle.net/20.500.12390/2642 https://doi.org/10.4171/JNCG/375 | 
| identifier_str_mv | 2-s2.0-85091630103 | 
| dc.language.iso.none.fl_str_mv | eng | 
| language | eng | 
| dc.relation.ispartof.none.fl_str_mv | Journal of Noncommutative Geometry | 
| dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess | 
| eu_rights_str_mv | openAccess | 
| dc.publisher.none.fl_str_mv | European Mathematical Society Publishing House | 
| publisher.none.fl_str_mv | European Mathematical Society Publishing House | 
| dc.source.none.fl_str_mv | reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC | 
| instname_str | Consejo Nacional de Ciencia Tecnología e Innovación | 
| instacron_str | CONCYTEC | 
| institution | CONCYTEC | 
| reponame_str | CONCYTEC-Institucional | 
| collection | CONCYTEC-Institucional | 
| repository.name.fl_str_mv | Repositorio Institucional CONCYTEC | 
| repository.mail.fl_str_mv | repositorio@concytec.gob.pe | 
| _version_ | 1844882993388191744 | 
| score | 13.402391 | 
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
 
   
   
             
            