Bivariant K-theory of generalized Weyl algebras

Descripción del Articulo

We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factor...

Descripción completa

Detalles Bibliográficos
Autores: Gutiérrez J., Valqui C.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2642
Enlace del recurso:https://hdl.handle.net/20.500.12390/2642
https://doi.org/10.4171/JNCG/375
Nivel de acceso:acceso abierto
Materia:Smooth generalized crossed products
Generalized Weyl algebras
K-theory
Kk-theory
http://purl.org/pe-repo/ocde/ford#1.01.01
id CONC_9c374e794665434b49de093ad4bc34d2
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2642
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp06821600rp06822600Gutiérrez J.Valqui C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2642https://doi.org/10.4171/JNCG/3752-s2.0-85091630103We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factors Bλ of U.sl2/ and the quantum weighted projective lines O.W Pq.k; l//. © European Mathematical SocietyFondo Nacional de Desarrollo Científico y Tecnológico - FondecytengEuropean Mathematical Society Publishing HouseJournal of Noncommutative Geometryinfo:eu-repo/semantics/openAccessSmooth generalized crossed productsGeneralized Weyl algebras-1K-theory-1Kk-theory-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Bivariant K-theory of generalized Weyl algebrasinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2642oai:repositorio.concytec.gob.pe:20.500.12390/26422024-05-30 15:25:13.511http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="83048170-6338-4213-a591-d527b775f297"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Bivariant K-theory of generalized Weyl algebras</Title> <PublishedIn> <Publication> <Title>Journal of Noncommutative Geometry</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.4171/JNCG/375</DOI> <SCP-Number>2-s2.0-85091630103</SCP-Number> <Authors> <Author> <DisplayName>Gutiérrez J.</DisplayName> <Person id="rp06821" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Valqui C.</DisplayName> <Person id="rp06822" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>European Mathematical Society Publishing House</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Smooth generalized crossed products</Keyword> <Keyword>Generalized Weyl algebras</Keyword> <Keyword>K-theory</Keyword> <Keyword>Kk-theory</Keyword> <Abstract>We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factors Bλ of U.sl2/ and the quantum weighted projective lines O.W Pq.k; l//. © European Mathematical Society</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv Bivariant K-theory of generalized Weyl algebras
title Bivariant K-theory of generalized Weyl algebras
spellingShingle Bivariant K-theory of generalized Weyl algebras
Gutiérrez J.
Smooth generalized crossed products
Generalized Weyl algebras
K-theory
Kk-theory
http://purl.org/pe-repo/ocde/ford#1.01.01
title_short Bivariant K-theory of generalized Weyl algebras
title_full Bivariant K-theory of generalized Weyl algebras
title_fullStr Bivariant K-theory of generalized Weyl algebras
title_full_unstemmed Bivariant K-theory of generalized Weyl algebras
title_sort Bivariant K-theory of generalized Weyl algebras
author Gutiérrez J.
author_facet Gutiérrez J.
Valqui C.
author_role author
author2 Valqui C.
author2_role author
dc.contributor.author.fl_str_mv Gutiérrez J.
Valqui C.
dc.subject.none.fl_str_mv Smooth generalized crossed products
topic Smooth generalized crossed products
Generalized Weyl algebras
K-theory
Kk-theory
http://purl.org/pe-repo/ocde/ford#1.01.01
dc.subject.es_PE.fl_str_mv Generalized Weyl algebras
K-theory
Kk-theory
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.01
description We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factors Bλ of U.sl2/ and the quantum weighted projective lines O.W Pq.k; l//. © European Mathematical Society
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2642
dc.identifier.doi.none.fl_str_mv https://doi.org/10.4171/JNCG/375
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85091630103
url https://hdl.handle.net/20.500.12390/2642
https://doi.org/10.4171/JNCG/375
identifier_str_mv 2-s2.0-85091630103
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Journal of Noncommutative Geometry
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv European Mathematical Society Publishing House
publisher.none.fl_str_mv European Mathematical Society Publishing House
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175623534182400
score 13.439101
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).