Bivariant K-theory of generalized Weyl algebras
Descripción del Articulo
We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factor...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2642 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2642 https://doi.org/10.4171/JNCG/375 |
Nivel de acceso: | acceso abierto |
Materia: | Smooth generalized crossed products Generalized Weyl algebras K-theory Kk-theory http://purl.org/pe-repo/ocde/ford#1.01.01 |
id |
CONC_9c374e794665434b49de093ad4bc34d2 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2642 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
spelling |
Publicationrp06821600rp06822600Gutiérrez J.Valqui C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2642https://doi.org/10.4171/JNCG/3752-s2.0-85091630103We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factors Bλ of U.sl2/ and the quantum weighted projective lines O.W Pq.k; l//. © European Mathematical SocietyFondo Nacional de Desarrollo Científico y Tecnológico - FondecytengEuropean Mathematical Society Publishing HouseJournal of Noncommutative Geometryinfo:eu-repo/semantics/openAccessSmooth generalized crossed productsGeneralized Weyl algebras-1K-theory-1Kk-theory-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Bivariant K-theory of generalized Weyl algebrasinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2642oai:repositorio.concytec.gob.pe:20.500.12390/26422024-05-30 15:25:13.511http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="83048170-6338-4213-a591-d527b775f297"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Bivariant K-theory of generalized Weyl algebras</Title> <PublishedIn> <Publication> <Title>Journal of Noncommutative Geometry</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.4171/JNCG/375</DOI> <SCP-Number>2-s2.0-85091630103</SCP-Number> <Authors> <Author> <DisplayName>Gutiérrez J.</DisplayName> <Person id="rp06821" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Valqui C.</DisplayName> <Person id="rp06822" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>European Mathematical Society Publishing House</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Smooth generalized crossed products</Keyword> <Keyword>Generalized Weyl algebras</Keyword> <Keyword>K-theory</Keyword> <Keyword>Kk-theory</Keyword> <Abstract>We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factors Bλ of U.sl2/ and the quantum weighted projective lines O.W Pq.k; l//. © European Mathematical Society</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
dc.title.none.fl_str_mv |
Bivariant K-theory of generalized Weyl algebras |
title |
Bivariant K-theory of generalized Weyl algebras |
spellingShingle |
Bivariant K-theory of generalized Weyl algebras Gutiérrez J. Smooth generalized crossed products Generalized Weyl algebras K-theory Kk-theory http://purl.org/pe-repo/ocde/ford#1.01.01 |
title_short |
Bivariant K-theory of generalized Weyl algebras |
title_full |
Bivariant K-theory of generalized Weyl algebras |
title_fullStr |
Bivariant K-theory of generalized Weyl algebras |
title_full_unstemmed |
Bivariant K-theory of generalized Weyl algebras |
title_sort |
Bivariant K-theory of generalized Weyl algebras |
author |
Gutiérrez J. |
author_facet |
Gutiérrez J. Valqui C. |
author_role |
author |
author2 |
Valqui C. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Gutiérrez J. Valqui C. |
dc.subject.none.fl_str_mv |
Smooth generalized crossed products |
topic |
Smooth generalized crossed products Generalized Weyl algebras K-theory Kk-theory http://purl.org/pe-repo/ocde/ford#1.01.01 |
dc.subject.es_PE.fl_str_mv |
Generalized Weyl algebras K-theory Kk-theory |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.01 |
description |
We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factors Bλ of U.sl2/ and the quantum weighted projective lines O.W Pq.k; l//. © European Mathematical Society |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2642 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.4171/JNCG/375 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85091630103 |
url |
https://hdl.handle.net/20.500.12390/2642 https://doi.org/10.4171/JNCG/375 |
identifier_str_mv |
2-s2.0-85091630103 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Journal of Noncommutative Geometry |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
European Mathematical Society Publishing House |
publisher.none.fl_str_mv |
European Mathematical Society Publishing House |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175623534182400 |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).