Bivariant K-Theory of generalized Weyl algebras

Descripción del Articulo

La K-teoría bivariante kkalg en la categoría Ica de algebras localmente convexas asigna grupos abelianos kknalg(A, B), n ∈ Z, a cada par de dichas álgebras A y B y existen aplicaciones bilineales kknalg(A, B) × kkmalg(B;C) kkn+malg(A,C) para A, B y C álgebras localmente convexas y m, n ∈ Z. Con est...

Descripción completa

Detalles Bibliográficos
Autor: Gutiérrez Alva, Julio Josué
Formato: tesis doctoral
Fecha de Publicación:2018
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:inglés
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/24521
Enlace del recurso:http://hdl.handle.net/20.500.14076/24521
Nivel de acceso:acceso abierto
Materia:Algebra de Weyl
Mátemática aplicada
https://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:La K-teoría bivariante kkalg en la categoría Ica de algebras localmente convexas asigna grupos abelianos kknalg(A, B), n ∈ Z, a cada par de dichas álgebras A y B y existen aplicaciones bilineales kknalg(A, B) × kkmalg(B;C) kkn+malg(A,C) para A, B y C álgebras localmente convexas y m, n ∈ Z. Con este producto, podemos definir una categoría KKalg cuyos objetos son álgebras localmente convexas y cuyos morfismos están dados por los grupos graduados kk∗alg(A, B). De este modo, la K-teoría bivariante kkalg se puede ver como un funtor kkalg : lca → KKalg. Este funtor es universal con respecto a funtores split exactos, invariantes por diffotopías y K-estables. En particular, un isomorfismo en KKalg induce un isomorfismo en KKLp y en homología cíclica periódica bivariante HP. En [10], se determina que los invariantes del ´algebra de Weyl A1(C) = C⟨x, y|xy − yx = 1⟩ son los mismos que los de C. Esto es, se prueba que A1(C) es isomorfo a C en la categoría KKalg. En este trabajo, generalizamos el resultado a una familia de ´algebras de Weyl generalizadas. Como resultados del presente trabajo, calculamos la clase de isomorfismo en la categoría KKalg de todas las álgebras de Weyl generalizadas no conmutativas A = C[h](σ, P ), donde σ(h) = qh + ho es un automorfismo de C[h] y P ∈ C[h], excepto cuando q ̸= 1 es una raíz de la unidad.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).