Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method

Descripción del Articulo

Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the l ?,1 ball, which has found application in cognitive ne...

Descripción completa

Detalles Bibliográficos
Autores: Chau G., Wohlberg B., Rodriguez P.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2741
Enlace del recurso:https://hdl.handle.net/20.500.12390/2741
https://doi.org/10.1137/18M1212525
Nivel de acceso:acceso abierto
Materia:Structured sparsity
Mixed norms
Projection
Regularization
Root finding
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_960f2d85378e05ebd224c2557b569e05
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2741
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method
title Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method
spellingShingle Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method
Chau G.
Structured sparsity
Mixed norms
Projection
Regularization
Root finding
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method
title_full Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method
title_fullStr Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method
title_full_unstemmed Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method
title_sort Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method
author Chau G.
author_facet Chau G.
Wohlberg B.
Rodriguez P.
author_role author
author2 Wohlberg B.
Rodriguez P.
author2_role author
author
dc.contributor.author.fl_str_mv Chau G.
Wohlberg B.
Rodriguez P.
dc.subject.none.fl_str_mv Structured sparsity
topic Structured sparsity
Mixed norms
Projection
Regularization
Root finding
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Mixed norms
Projection
Regularization
Root finding
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the l ?,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation. © 2019 Society for Industrial and Applied Mathematics.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2741
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1137/18M1212525
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85064230441
url https://hdl.handle.net/20.500.12390/2741
https://doi.org/10.1137/18M1212525
identifier_str_mv 2-s2.0-85064230441
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv SIAM Journal on Imaging Sciences
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.publisher.none.fl_str_mv Society for Industrial and Applied Mathematics Publications
publisher.none.fl_str_mv Society for Industrial and Applied Mathematics Publications
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1854395866095288320
spelling Publicationrp07327600rp07326600rp05770600Chau G.Wohlberg B.Rodriguez P.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2741https://doi.org/10.1137/18M12125252-s2.0-85064230441Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the l ?,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation. © 2019 Society for Industrial and Applied Mathematics.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSociety for Industrial and Applied Mathematics PublicationsSIAM Journal on Imaging Sciencesinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Structured sparsityMixed norms-1Projection-1Regularization-1Root finding-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search methodinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2741oai:repositorio.concytec.gob.pe:20.500.12390/27412024-05-30 16:10:59.121https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="f1ccb13c-af5c-487b-bf88-7ce35f34a74f"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method</Title> <PublishedIn> <Publication> <Title>SIAM Journal on Imaging Sciences</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1137/18M1212525</DOI> <SCP-Number>2-s2.0-85064230441</SCP-Number> <Authors> <Author> <DisplayName>Chau G.</DisplayName> <Person id="rp07327" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Wohlberg B.</DisplayName> <Person id="rp07326" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rodriguez P.</DisplayName> <Person id="rp05770" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Society for Industrial and Applied Mathematics Publications</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Structured sparsity</Keyword> <Keyword>Mixed norms</Keyword> <Keyword>Projection</Keyword> <Keyword>Regularization</Keyword> <Keyword>Root finding</Keyword> <Abstract>Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the l ?,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation. © 2019 Society for Industrial and Applied Mathematics.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.922529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).