Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method
Descripción del Articulo
Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the l ?,1 ball, which has found application in cognitive ne...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2019 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2741 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2741 https://doi.org/10.1137/18M1212525 |
| Nivel de acceso: | acceso abierto |
| Materia: | Structured sparsity Mixed norms Projection Regularization Root finding http://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
CONC_960f2d85378e05ebd224c2557b569e05 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2741 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method |
| title |
Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method |
| spellingShingle |
Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method Chau G. Structured sparsity Mixed norms Projection Regularization Root finding http://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method |
| title_full |
Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method |
| title_fullStr |
Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method |
| title_full_unstemmed |
Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method |
| title_sort |
Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method |
| author |
Chau G. |
| author_facet |
Chau G. Wohlberg B. Rodriguez P. |
| author_role |
author |
| author2 |
Wohlberg B. Rodriguez P. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Chau G. Wohlberg B. Rodriguez P. |
| dc.subject.none.fl_str_mv |
Structured sparsity |
| topic |
Structured sparsity Mixed norms Projection Regularization Root finding http://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.es_PE.fl_str_mv |
Mixed norms Projection Regularization Root finding |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the l ?,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation. © 2019 Society for Industrial and Applied Mathematics. |
| publishDate |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2019 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2741 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1137/18M1212525 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85064230441 |
| url |
https://hdl.handle.net/20.500.12390/2741 https://doi.org/10.1137/18M1212525 |
| identifier_str_mv |
2-s2.0-85064230441 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
SIAM Journal on Imaging Sciences |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics Publications |
| publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics Publications |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1854395866095288320 |
| spelling |
Publicationrp07327600rp07326600rp05770600Chau G.Wohlberg B.Rodriguez P.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2741https://doi.org/10.1137/18M12125252-s2.0-85064230441Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the l ?,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation. © 2019 Society for Industrial and Applied Mathematics.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSociety for Industrial and Applied Mathematics PublicationsSIAM Journal on Imaging Sciencesinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Structured sparsityMixed norms-1Projection-1Regularization-1Root finding-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search methodinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2741oai:repositorio.concytec.gob.pe:20.500.12390/27412024-05-30 16:10:59.121https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="f1ccb13c-af5c-487b-bf88-7ce35f34a74f"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Efficient projection onto the ? ?,1 mixed-norm ball using a newton root search method</Title> <PublishedIn> <Publication> <Title>SIAM Journal on Imaging Sciences</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1137/18M1212525</DOI> <SCP-Number>2-s2.0-85064230441</SCP-Number> <Authors> <Author> <DisplayName>Chau G.</DisplayName> <Person id="rp07327" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Wohlberg B.</DisplayName> <Person id="rp07326" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rodriguez P.</DisplayName> <Person id="rp05770" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Society for Industrial and Applied Mathematics Publications</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Structured sparsity</Keyword> <Keyword>Mixed norms</Keyword> <Keyword>Projection</Keyword> <Keyword>Regularization</Keyword> <Keyword>Root finding</Keyword> <Abstract>Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the l ?,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation. © 2019 Society for Industrial and Applied Mathematics.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.922529 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).