Latent semantic indexing and convolutional neural network for multi-label and multi-class text classification
Descripción del Articulo
The classification of a real text should not be necessarily treated as a binary or multi-class classification, since the text may belong to one or more labels. This type of problem is called multi-label classification. In this paper, we propose the use of latent semantic indexing to text representat...
| Autores: | , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2017 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1302 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/1302 https://doi.org/10.1109/la-cci.2017.8285711 |
| Nivel de acceso: | acceso abierto |
| Materia: | indexing convolution feature extraction feedforward neural nets https://purl.org/pe-repo/ocde/ford#5.08.02 |
| id |
CONC_884f63bd73dcd64ace194473ca71b7fb |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1302 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| spelling |
Publicationrp03689500rp03688500rp03687500Quispe, OscarOcsa, AlexanderCoronado, Ricardo2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017-11https://hdl.handle.net/20.500.12390/1302https://doi.org/10.1109/la-cci.2017.8285711The classification of a real text should not be necessarily treated as a binary or multi-class classification, since the text may belong to one or more labels. This type of problem is called multi-label classification. In this paper, we propose the use of latent semantic indexing to text representation, convolutional neural networks to feature extraction and a single multi layer perceptron for multi-label classification in real text data. The experiments show that the model outperforms state of the art techniques when the dataset has long documents, and we observe that the precision is poor when the size of the texts is small.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengIEEE2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)info:eu-repo/semantics/openAccessindexingconvolution-1feature extraction-1feedforward neural nets-1https://purl.org/pe-repo/ocde/ford#5.08.02-1Latent semantic indexing and convolutional neural network for multi-label and multi-class text classificationinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1302oai:repositorio.concytec.gob.pe:20.500.12390/13022024-05-30 15:52:09.66http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="42bc58e0-594f-4113-9d16-a2f8724e2be8"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Latent semantic indexing and convolutional neural network for multi-label and multi-class text classification</Title> <PublishedIn> <Publication> <Title>2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)</Title> </Publication> </PublishedIn> <PublicationDate>2017-11</PublicationDate> <DOI>https://doi.org/10.1109/la-cci.2017.8285711</DOI> <Authors> <Author> <DisplayName>Quispe, Oscar</DisplayName> <Person id="rp03689" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ocsa, Alexander</DisplayName> <Person id="rp03688" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Coronado, Ricardo</DisplayName> <Person id="rp03687" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>indexing</Keyword> <Keyword>convolution</Keyword> <Keyword>feature extraction</Keyword> <Keyword>feedforward neural nets</Keyword> <Abstract>The classification of a real text should not be necessarily treated as a binary or multi-class classification, since the text may belong to one or more labels. This type of problem is called multi-label classification. In this paper, we propose the use of latent semantic indexing to text representation, convolutional neural networks to feature extraction and a single multi layer perceptron for multi-label classification in real text data. The experiments show that the model outperforms state of the art techniques when the dataset has long documents, and we observe that the precision is poor when the size of the texts is small.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| dc.title.none.fl_str_mv |
Latent semantic indexing and convolutional neural network for multi-label and multi-class text classification |
| title |
Latent semantic indexing and convolutional neural network for multi-label and multi-class text classification |
| spellingShingle |
Latent semantic indexing and convolutional neural network for multi-label and multi-class text classification Quispe, Oscar indexing convolution feature extraction feedforward neural nets https://purl.org/pe-repo/ocde/ford#5.08.02 |
| title_short |
Latent semantic indexing and convolutional neural network for multi-label and multi-class text classification |
| title_full |
Latent semantic indexing and convolutional neural network for multi-label and multi-class text classification |
| title_fullStr |
Latent semantic indexing and convolutional neural network for multi-label and multi-class text classification |
| title_full_unstemmed |
Latent semantic indexing and convolutional neural network for multi-label and multi-class text classification |
| title_sort |
Latent semantic indexing and convolutional neural network for multi-label and multi-class text classification |
| author |
Quispe, Oscar |
| author_facet |
Quispe, Oscar Ocsa, Alexander Coronado, Ricardo |
| author_role |
author |
| author2 |
Ocsa, Alexander Coronado, Ricardo |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Quispe, Oscar Ocsa, Alexander Coronado, Ricardo |
| dc.subject.none.fl_str_mv |
indexing |
| topic |
indexing convolution feature extraction feedforward neural nets https://purl.org/pe-repo/ocde/ford#5.08.02 |
| dc.subject.es_PE.fl_str_mv |
convolution feature extraction feedforward neural nets |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.08.02 |
| description |
The classification of a real text should not be necessarily treated as a binary or multi-class classification, since the text may belong to one or more labels. This type of problem is called multi-label classification. In this paper, we propose the use of latent semantic indexing to text representation, convolutional neural networks to feature extraction and a single multi layer perceptron for multi-label classification in real text data. The experiments show that the model outperforms state of the art techniques when the dataset has long documents, and we observe that the precision is poor when the size of the texts is small. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2017-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1302 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/la-cci.2017.8285711 |
| url |
https://hdl.handle.net/20.500.12390/1302 https://doi.org/10.1109/la-cci.2017.8285711 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI) |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
IEEE |
| publisher.none.fl_str_mv |
IEEE |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883084766347264 |
| score |
13.434648 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).