Chronic Pain Estimation Through Deep Facial Descriptors Analysis

Descripción del Articulo

Worldwide, chronic pain has established as one of the foremost medical issues due to its 35% of comorbidity with depression and many other psychological problems. Traditionally, self-report (VAS scale) or physicist inspection (OPI scale) perform the pain assessment; nonetheless, both methods do not...

Descripción completa

Detalles Bibliográficos
Autores: Mauricio A., Peña J., Dianderas E., Mauricio L., Díaz J., Morán A.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2652
Enlace del recurso:https://hdl.handle.net/20.500.12390/2652
https://doi.org/10.1007/978-3-030-46140-9_17
Nivel de acceso:acceso abierto
Materia:Pain recognition
CNN-RNN hybrid architecture
Deep facial representations
http://purl.org/pe-repo/ocde/ford#2.02.03
id CONC_86a4889330d637f7a0a354e572f47e9c
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2652
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Chronic Pain Estimation Through Deep Facial Descriptors Analysis
title Chronic Pain Estimation Through Deep Facial Descriptors Analysis
spellingShingle Chronic Pain Estimation Through Deep Facial Descriptors Analysis
Mauricio A.
Pain recognition
CNN-RNN hybrid architecture
Deep facial representations
http://purl.org/pe-repo/ocde/ford#2.02.03
title_short Chronic Pain Estimation Through Deep Facial Descriptors Analysis
title_full Chronic Pain Estimation Through Deep Facial Descriptors Analysis
title_fullStr Chronic Pain Estimation Through Deep Facial Descriptors Analysis
title_full_unstemmed Chronic Pain Estimation Through Deep Facial Descriptors Analysis
title_sort Chronic Pain Estimation Through Deep Facial Descriptors Analysis
author Mauricio A.
author_facet Mauricio A.
Peña J.
Dianderas E.
Mauricio L.
Díaz J.
Morán A.
author_role author
author2 Peña J.
Dianderas E.
Mauricio L.
Díaz J.
Morán A.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Mauricio A.
Peña J.
Dianderas E.
Mauricio L.
Díaz J.
Morán A.
dc.subject.none.fl_str_mv Pain recognition
topic Pain recognition
CNN-RNN hybrid architecture
Deep facial representations
http://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.es_PE.fl_str_mv CNN-RNN hybrid architecture
Deep facial representations
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.03
description Worldwide, chronic pain has established as one of the foremost medical issues due to its 35% of comorbidity with depression and many other psychological problems. Traditionally, self-report (VAS scale) or physicist inspection (OPI scale) perform the pain assessment; nonetheless, both methods do not usually coincide [14]. Regarding self-assessment, several patients are not able to complete it objectively, like young children or patients with limited expression abilities. The lack of objectivity in the metrics draws the main problem of the clinical analysis of pain. In response, various efforts have tried concerning the inclusion of objective metrics, among which stand out the Prkachin and Solomon Pain Intensity (PSPI) metric defined by face appearance [5]. This work presents an in-depth learning approach to pain recognition considering deep facial representations and sequence analysis. Contrasting current state-of-the-art deep learning techniques, we correct rigid deformations caught since registration. A preprocessing stage is applied, which includes facial frontalization to untangle facial representations from non-affine transformations, perspective deformations, and outside noises passed since registration. After dealing with unbalanced data, we fine-tune a CNN from a pre-trained model to extract facial features, and then a multilayer RNN exploits temporal relation between video frames. As a result, we overcome state-of-the-art in terms of average accuracy at frames level (80.44%) and sequence level (84.54%) in the UNBC-McMaster Shoulder Pain Expression Archive Database.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2652
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-46140-9_17
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85084840351
url https://hdl.handle.net/20.500.12390/2652
https://doi.org/10.1007/978-3-030-46140-9_17
identifier_str_mv 2-s2.0-85084840351
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Communications in Computer and Information Science
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883047252492288
spelling Publicationrp00530600rp06847600rp00524600rp00531600rp06848600rp06849600Mauricio A.Peña J.Dianderas E.Mauricio L.Díaz J.Morán A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2652https://doi.org/10.1007/978-3-030-46140-9_172-s2.0-85084840351Worldwide, chronic pain has established as one of the foremost medical issues due to its 35% of comorbidity with depression and many other psychological problems. Traditionally, self-report (VAS scale) or physicist inspection (OPI scale) perform the pain assessment; nonetheless, both methods do not usually coincide [14]. Regarding self-assessment, several patients are not able to complete it objectively, like young children or patients with limited expression abilities. The lack of objectivity in the metrics draws the main problem of the clinical analysis of pain. In response, various efforts have tried concerning the inclusion of objective metrics, among which stand out the Prkachin and Solomon Pain Intensity (PSPI) metric defined by face appearance [5]. This work presents an in-depth learning approach to pain recognition considering deep facial representations and sequence analysis. Contrasting current state-of-the-art deep learning techniques, we correct rigid deformations caught since registration. A preprocessing stage is applied, which includes facial frontalization to untangle facial representations from non-affine transformations, perspective deformations, and outside noises passed since registration. After dealing with unbalanced data, we fine-tune a CNN from a pre-trained model to extract facial features, and then a multilayer RNN exploits temporal relation between video frames. As a result, we overcome state-of-the-art in terms of average accuracy at frames level (80.44%) and sequence level (84.54%) in the UNBC-McMaster Shoulder Pain Expression Archive Database.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringerCommunications in Computer and Information Scienceinfo:eu-repo/semantics/openAccessPain recognitionCNN-RNN hybrid architecture-1Deep facial representations-1http://purl.org/pe-repo/ocde/ford#2.02.03-1Chronic Pain Estimation Through Deep Facial Descriptors Analysisinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2652oai:repositorio.concytec.gob.pe:20.500.12390/26522024-05-30 15:42:27.486http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="53a15082-a483-4809-b89c-0b8caab8a75d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Chronic Pain Estimation Through Deep Facial Descriptors Analysis</Title> <PublishedIn> <Publication> <Title>Communications in Computer and Information Science</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-46140-9_17</DOI> <SCP-Number>2-s2.0-85084840351</SCP-Number> <Authors> <Author> <DisplayName>Mauricio A.</DisplayName> <Person id="rp00530" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Peña J.</DisplayName> <Person id="rp06847" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Dianderas E.</DisplayName> <Person id="rp00524" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mauricio L.</DisplayName> <Person id="rp00531" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Díaz J.</DisplayName> <Person id="rp06848" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morán A.</DisplayName> <Person id="rp06849" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Pain recognition</Keyword> <Keyword>CNN-RNN hybrid architecture</Keyword> <Keyword>Deep facial representations</Keyword> <Abstract>Worldwide, chronic pain has established as one of the foremost medical issues due to its 35% of comorbidity with depression and many other psychological problems. Traditionally, self-report (VAS scale) or physicist inspection (OPI scale) perform the pain assessment; nonetheless, both methods do not usually coincide [14]. Regarding self-assessment, several patients are not able to complete it objectively, like young children or patients with limited expression abilities. The lack of objectivity in the metrics draws the main problem of the clinical analysis of pain. In response, various efforts have tried concerning the inclusion of objective metrics, among which stand out the Prkachin and Solomon Pain Intensity (PSPI) metric defined by face appearance [5]. This work presents an in-depth learning approach to pain recognition considering deep facial representations and sequence analysis. Contrasting current state-of-the-art deep learning techniques, we correct rigid deformations caught since registration. A preprocessing stage is applied, which includes facial frontalization to untangle facial representations from non-affine transformations, perspective deformations, and outside noises passed since registration. After dealing with unbalanced data, we fine-tune a CNN from a pre-trained model to extract facial features, and then a multilayer RNN exploits temporal relation between video frames. As a result, we overcome state-of-the-art in terms of average accuracy at frames level (80.44%) and sequence level (84.54%) in the UNBC-McMaster Shoulder Pain Expression Archive Database.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.394457
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).