Chronic Pain Estimation Through Deep Facial Descriptors Analysis
Descripción del Articulo
Worldwide, chronic pain has established as one of the foremost medical issues due to its 35% of comorbidity with depression and many other psychological problems. Traditionally, self-report (VAS scale) or physicist inspection (OPI scale) perform the pain assessment; nonetheless, both methods do not...
| Autores: | , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2652 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2652 https://doi.org/10.1007/978-3-030-46140-9_17 |
| Nivel de acceso: | acceso abierto |
| Materia: | Pain recognition CNN-RNN hybrid architecture Deep facial representations http://purl.org/pe-repo/ocde/ford#2.02.03 |
| id |
CONC_86a4889330d637f7a0a354e572f47e9c |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2652 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Chronic Pain Estimation Through Deep Facial Descriptors Analysis |
| title |
Chronic Pain Estimation Through Deep Facial Descriptors Analysis |
| spellingShingle |
Chronic Pain Estimation Through Deep Facial Descriptors Analysis Mauricio A. Pain recognition CNN-RNN hybrid architecture Deep facial representations http://purl.org/pe-repo/ocde/ford#2.02.03 |
| title_short |
Chronic Pain Estimation Through Deep Facial Descriptors Analysis |
| title_full |
Chronic Pain Estimation Through Deep Facial Descriptors Analysis |
| title_fullStr |
Chronic Pain Estimation Through Deep Facial Descriptors Analysis |
| title_full_unstemmed |
Chronic Pain Estimation Through Deep Facial Descriptors Analysis |
| title_sort |
Chronic Pain Estimation Through Deep Facial Descriptors Analysis |
| author |
Mauricio A. |
| author_facet |
Mauricio A. Peña J. Dianderas E. Mauricio L. Díaz J. Morán A. |
| author_role |
author |
| author2 |
Peña J. Dianderas E. Mauricio L. Díaz J. Morán A. |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Mauricio A. Peña J. Dianderas E. Mauricio L. Díaz J. Morán A. |
| dc.subject.none.fl_str_mv |
Pain recognition |
| topic |
Pain recognition CNN-RNN hybrid architecture Deep facial representations http://purl.org/pe-repo/ocde/ford#2.02.03 |
| dc.subject.es_PE.fl_str_mv |
CNN-RNN hybrid architecture Deep facial representations |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.03 |
| description |
Worldwide, chronic pain has established as one of the foremost medical issues due to its 35% of comorbidity with depression and many other psychological problems. Traditionally, self-report (VAS scale) or physicist inspection (OPI scale) perform the pain assessment; nonetheless, both methods do not usually coincide [14]. Regarding self-assessment, several patients are not able to complete it objectively, like young children or patients with limited expression abilities. The lack of objectivity in the metrics draws the main problem of the clinical analysis of pain. In response, various efforts have tried concerning the inclusion of objective metrics, among which stand out the Prkachin and Solomon Pain Intensity (PSPI) metric defined by face appearance [5]. This work presents an in-depth learning approach to pain recognition considering deep facial representations and sequence analysis. Contrasting current state-of-the-art deep learning techniques, we correct rigid deformations caught since registration. A preprocessing stage is applied, which includes facial frontalization to untangle facial representations from non-affine transformations, perspective deformations, and outside noises passed since registration. After dealing with unbalanced data, we fine-tune a CNN from a pre-trained model to extract facial features, and then a multilayer RNN exploits temporal relation between video frames. As a result, we overcome state-of-the-art in terms of average accuracy at frames level (80.44%) and sequence level (84.54%) in the UNBC-McMaster Shoulder Pain Expression Archive Database. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2652 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-46140-9_17 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85084840351 |
| url |
https://hdl.handle.net/20.500.12390/2652 https://doi.org/10.1007/978-3-030-46140-9_17 |
| identifier_str_mv |
2-s2.0-85084840351 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Communications in Computer and Information Science |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883047252492288 |
| spelling |
Publicationrp00530600rp06847600rp00524600rp00531600rp06848600rp06849600Mauricio A.Peña J.Dianderas E.Mauricio L.Díaz J.Morán A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2652https://doi.org/10.1007/978-3-030-46140-9_172-s2.0-85084840351Worldwide, chronic pain has established as one of the foremost medical issues due to its 35% of comorbidity with depression and many other psychological problems. Traditionally, self-report (VAS scale) or physicist inspection (OPI scale) perform the pain assessment; nonetheless, both methods do not usually coincide [14]. Regarding self-assessment, several patients are not able to complete it objectively, like young children or patients with limited expression abilities. The lack of objectivity in the metrics draws the main problem of the clinical analysis of pain. In response, various efforts have tried concerning the inclusion of objective metrics, among which stand out the Prkachin and Solomon Pain Intensity (PSPI) metric defined by face appearance [5]. This work presents an in-depth learning approach to pain recognition considering deep facial representations and sequence analysis. Contrasting current state-of-the-art deep learning techniques, we correct rigid deformations caught since registration. A preprocessing stage is applied, which includes facial frontalization to untangle facial representations from non-affine transformations, perspective deformations, and outside noises passed since registration. After dealing with unbalanced data, we fine-tune a CNN from a pre-trained model to extract facial features, and then a multilayer RNN exploits temporal relation between video frames. As a result, we overcome state-of-the-art in terms of average accuracy at frames level (80.44%) and sequence level (84.54%) in the UNBC-McMaster Shoulder Pain Expression Archive Database.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringerCommunications in Computer and Information Scienceinfo:eu-repo/semantics/openAccessPain recognitionCNN-RNN hybrid architecture-1Deep facial representations-1http://purl.org/pe-repo/ocde/ford#2.02.03-1Chronic Pain Estimation Through Deep Facial Descriptors Analysisinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2652oai:repositorio.concytec.gob.pe:20.500.12390/26522024-05-30 15:42:27.486http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="53a15082-a483-4809-b89c-0b8caab8a75d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Chronic Pain Estimation Through Deep Facial Descriptors Analysis</Title> <PublishedIn> <Publication> <Title>Communications in Computer and Information Science</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-46140-9_17</DOI> <SCP-Number>2-s2.0-85084840351</SCP-Number> <Authors> <Author> <DisplayName>Mauricio A.</DisplayName> <Person id="rp00530" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Peña J.</DisplayName> <Person id="rp06847" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Dianderas E.</DisplayName> <Person id="rp00524" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mauricio L.</DisplayName> <Person id="rp00531" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Díaz J.</DisplayName> <Person id="rp06848" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morán A.</DisplayName> <Person id="rp06849" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Pain recognition</Keyword> <Keyword>CNN-RNN hybrid architecture</Keyword> <Keyword>Deep facial representations</Keyword> <Abstract>Worldwide, chronic pain has established as one of the foremost medical issues due to its 35% of comorbidity with depression and many other psychological problems. Traditionally, self-report (VAS scale) or physicist inspection (OPI scale) perform the pain assessment; nonetheless, both methods do not usually coincide [14]. Regarding self-assessment, several patients are not able to complete it objectively, like young children or patients with limited expression abilities. The lack of objectivity in the metrics draws the main problem of the clinical analysis of pain. In response, various efforts have tried concerning the inclusion of objective metrics, among which stand out the Prkachin and Solomon Pain Intensity (PSPI) metric defined by face appearance [5]. This work presents an in-depth learning approach to pain recognition considering deep facial representations and sequence analysis. Contrasting current state-of-the-art deep learning techniques, we correct rigid deformations caught since registration. A preprocessing stage is applied, which includes facial frontalization to untangle facial representations from non-affine transformations, perspective deformations, and outside noises passed since registration. After dealing with unbalanced data, we fine-tune a CNN from a pre-trained model to extract facial features, and then a multilayer RNN exploits temporal relation between video frames. As a result, we overcome state-of-the-art in terms of average accuracy at frames level (80.44%) and sequence level (84.54%) in the UNBC-McMaster Shoulder Pain Expression Archive Database.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.394457 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).