Doping engineering of thermoelectric transport in BNC heteronanotubes

Descripción del Articulo

L. M. S. gratefully acknowledges the International Max Planck Research School Dynamical processes in atoms, molecules and solids and the Deutscher Akademischer Austauschdienst (DAAD) for the financial support. G. C. S. and C. V. L. are grateful to the National Council of Science and Technology (CONC...

Descripción completa

Detalles Bibliográficos
Autores: Medrano Sandonas L., Cuba-Supanta G., Gutierrez R., Landauro C.V., Rojas-Tapia J., Cuniberti G.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/859
Enlace del recurso:https://hdl.handle.net/20.500.12390/859
https://doi.org/10.1039/c8cp05592k
Nivel de acceso:acceso abierto
Materia:transport properties
nanoscale thermoelectric devices
BNC heteronanotubes
https://purl.org/pe-repo/ocde/ford#2.03.00
id CONC_7f95dcd6805598940e269a05c417361e
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/859
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Doping engineering of thermoelectric transport in BNC heteronanotubes
title Doping engineering of thermoelectric transport in BNC heteronanotubes
spellingShingle Doping engineering of thermoelectric transport in BNC heteronanotubes
Medrano Sandonas L.
transport properties
nanoscale thermoelectric devices
BNC heteronanotubes
https://purl.org/pe-repo/ocde/ford#2.03.00
title_short Doping engineering of thermoelectric transport in BNC heteronanotubes
title_full Doping engineering of thermoelectric transport in BNC heteronanotubes
title_fullStr Doping engineering of thermoelectric transport in BNC heteronanotubes
title_full_unstemmed Doping engineering of thermoelectric transport in BNC heteronanotubes
title_sort Doping engineering of thermoelectric transport in BNC heteronanotubes
author Medrano Sandonas L.
author_facet Medrano Sandonas L.
Cuba-Supanta G.
Gutierrez R.
Landauro C.V.
Rojas-Tapia J.
Cuniberti G.
author_role author
author2 Cuba-Supanta G.
Gutierrez R.
Landauro C.V.
Rojas-Tapia J.
Cuniberti G.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Medrano Sandonas L.
Cuba-Supanta G.
Gutierrez R.
Landauro C.V.
Rojas-Tapia J.
Cuniberti G.
dc.subject.none.fl_str_mv transport properties
topic transport properties
nanoscale thermoelectric devices
BNC heteronanotubes
https://purl.org/pe-repo/ocde/ford#2.03.00
dc.subject.es_PE.fl_str_mv nanoscale thermoelectric devices
BNC heteronanotubes
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.03.00
description L. M. S. gratefully acknowledges the International Max Planck Research School Dynamical processes in atoms, molecules and solids and the Deutscher Akademischer Austauschdienst (DAAD) for the financial support. G. C. S. and C. V. L. are grateful to the National Council of Science and Technology (CONCYTEC) from Peru for the financial support through the Doctoral Program for Peruvian Universities (No. 218-2014-FONDECYT) and the Peruvian Excellence Center Program, respectively. This work has also been partly supported by the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden”. We acknowledge the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for computational resources. Open Access funding provided by the Max Planck Society.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/859
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1039/c8cp05592k
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85060400792
url https://hdl.handle.net/20.500.12390/859
https://doi.org/10.1039/c8cp05592k
identifier_str_mv 2-s2.0-85060400792
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Physical Chemistry Chemical Physics
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/3.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/3.0/
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175701322792960
spelling Publicationrp01164500rp00836500rp00595400rp00840500rp01371500rp01163500Medrano Sandonas L.Cuba-Supanta G.Gutierrez R.Landauro C.V.Rojas-Tapia J.Cuniberti G.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/859https://doi.org/10.1039/c8cp05592k2-s2.0-85060400792L. M. S. gratefully acknowledges the International Max Planck Research School Dynamical processes in atoms, molecules and solids and the Deutscher Akademischer Austauschdienst (DAAD) for the financial support. G. C. S. and C. V. L. are grateful to the National Council of Science and Technology (CONCYTEC) from Peru for the financial support through the Doctoral Program for Peruvian Universities (No. 218-2014-FONDECYT) and the Peruvian Excellence Center Program, respectively. This work has also been partly supported by the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden”. We acknowledge the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for computational resources. Open Access funding provided by the Max Planck Society.BNC heteronanotubes are promising materials for the design of nanoscale thermoelectric devices. In particular, the structural BN doping pattern can be exploited to control the electrical and thermal transport properties of BNC nanostructures. We here address the thermoelectric transport properties of (6,6)-BNC heteronanotubes with helical and horizontal BN doping patterns. For this, we use a density functional tight-binding method combined with the Green's function technique. Our results show that the electron transmission is reduced and the electronic bandgap increased as a function of the BN concentration for different doping distribution patterns, so that (6,6)-BNC heteronanotubes become semiconducting with a tunable bandgap. The thermal conductance of helical (6,6)-BNC heteronanotubes, which is dominated by phonons, is weakly dependent on BN concentration in the range of 30–80%. Also, the Seebeck coefficient is enhanced by increasing the concentration of helical BN strips. In particular, helical (6,6)-BNC heteronanotubes with a high BN concentration (>20%) display a larger figure of merit compared to other doping distributions and, for a concentration of 50%, reach values up to 2.3 times and 3.4 times the corresponding values of a CNT at 300 K and 800 K, respectively. Our study yields new insights into the parameters tuning the thermoelectric efficiency and thus provides a starting point for designing thermoelectric devices based on BNC nanostructures.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengRoyal Society of ChemistryPhysical Chemistry Chemical Physicsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/3.0/transport propertiesnanoscale thermoelectric devices-1BNC heteronanotubes-1https://purl.org/pe-repo/ocde/ford#2.03.00-1Doping engineering of thermoelectric transport in BNC heteronanotubesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/859oai:repositorio.concytec.gob.pe:20.500.12390/8592024-05-30 15:23:05.796https://creativecommons.org/licenses/by/3.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="af8688f2-8351-4a49-8afb-c1acd88e4e5d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Doping engineering of thermoelectric transport in BNC heteronanotubes</Title> <PublishedIn> <Publication> <Title>Physical Chemistry Chemical Physics</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1039/c8cp05592k</DOI> <SCP-Number>2-s2.0-85060400792</SCP-Number> <Authors> <Author> <DisplayName>Medrano Sandonas L.</DisplayName> <Person id="rp01164" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cuba-Supanta G.</DisplayName> <Person id="rp00836" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gutierrez R.</DisplayName> <Person id="rp00595" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Landauro C.V.</DisplayName> <Person id="rp00840" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rojas-Tapia J.</DisplayName> <Person id="rp01371" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cuniberti G.</DisplayName> <Person id="rp01163" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Royal Society of Chemistry</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/3.0/</License> <Keyword>transport properties</Keyword> <Keyword>nanoscale thermoelectric devices</Keyword> <Keyword>BNC heteronanotubes</Keyword> <Abstract>BNC heteronanotubes are promising materials for the design of nanoscale thermoelectric devices. In particular, the structural BN doping pattern can be exploited to control the electrical and thermal transport properties of BNC nanostructures. We here address the thermoelectric transport properties of (6,6)-BNC heteronanotubes with helical and horizontal BN doping patterns. For this, we use a density functional tight-binding method combined with the Green&apos;s function technique. Our results show that the electron transmission is reduced and the electronic bandgap increased as a function of the BN concentration for different doping distribution patterns, so that (6,6)-BNC heteronanotubes become semiconducting with a tunable bandgap. The thermal conductance of helical (6,6)-BNC heteronanotubes, which is dominated by phonons, is weakly dependent on BN concentration in the range of 30–80%. Also, the Seebeck coefficient is enhanced by increasing the concentration of helical BN strips. In particular, helical (6,6)-BNC heteronanotubes with a high BN concentration (&gt;20%) display a larger figure of merit compared to other doping distributions and, for a concentration of 50%, reach values up to 2.3 times and 3.4 times the corresponding values of a CNT at 300 K and 800 K, respectively. Our study yields new insights into the parameters tuning the thermoelectric efficiency and thus provides a starting point for designing thermoelectric devices based on BNC nanostructures.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.461011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).