Doping engineering of thermoelectric transport in BNC heteronanotubes
Descripción del Articulo
L. M. S. gratefully acknowledges the International Max Planck Research School Dynamical processes in atoms, molecules and solids and the Deutscher Akademischer Austauschdienst (DAAD) for the financial support. G. C. S. and C. V. L. are grateful to the National Council of Science and Technology (CONC...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/859 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/859 https://doi.org/10.1039/c8cp05592k |
Nivel de acceso: | acceso abierto |
Materia: | transport properties nanoscale thermoelectric devices BNC heteronanotubes https://purl.org/pe-repo/ocde/ford#2.03.00 |
id |
CONC_7f95dcd6805598940e269a05c417361e |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/859 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Doping engineering of thermoelectric transport in BNC heteronanotubes |
title |
Doping engineering of thermoelectric transport in BNC heteronanotubes |
spellingShingle |
Doping engineering of thermoelectric transport in BNC heteronanotubes Medrano Sandonas L. transport properties nanoscale thermoelectric devices BNC heteronanotubes https://purl.org/pe-repo/ocde/ford#2.03.00 |
title_short |
Doping engineering of thermoelectric transport in BNC heteronanotubes |
title_full |
Doping engineering of thermoelectric transport in BNC heteronanotubes |
title_fullStr |
Doping engineering of thermoelectric transport in BNC heteronanotubes |
title_full_unstemmed |
Doping engineering of thermoelectric transport in BNC heteronanotubes |
title_sort |
Doping engineering of thermoelectric transport in BNC heteronanotubes |
author |
Medrano Sandonas L. |
author_facet |
Medrano Sandonas L. Cuba-Supanta G. Gutierrez R. Landauro C.V. Rojas-Tapia J. Cuniberti G. |
author_role |
author |
author2 |
Cuba-Supanta G. Gutierrez R. Landauro C.V. Rojas-Tapia J. Cuniberti G. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Medrano Sandonas L. Cuba-Supanta G. Gutierrez R. Landauro C.V. Rojas-Tapia J. Cuniberti G. |
dc.subject.none.fl_str_mv |
transport properties |
topic |
transport properties nanoscale thermoelectric devices BNC heteronanotubes https://purl.org/pe-repo/ocde/ford#2.03.00 |
dc.subject.es_PE.fl_str_mv |
nanoscale thermoelectric devices BNC heteronanotubes |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.03.00 |
description |
L. M. S. gratefully acknowledges the International Max Planck Research School Dynamical processes in atoms, molecules and solids and the Deutscher Akademischer Austauschdienst (DAAD) for the financial support. G. C. S. and C. V. L. are grateful to the National Council of Science and Technology (CONCYTEC) from Peru for the financial support through the Doctoral Program for Peruvian Universities (No. 218-2014-FONDECYT) and the Peruvian Excellence Center Program, respectively. This work has also been partly supported by the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden”. We acknowledge the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for computational resources. Open Access funding provided by the Max Planck Society. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/859 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1039/c8cp05592k |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85060400792 |
url |
https://hdl.handle.net/20.500.12390/859 https://doi.org/10.1039/c8cp05592k |
identifier_str_mv |
2-s2.0-85060400792 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Physical Chemistry Chemical Physics |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/3.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/3.0/ |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175701322792960 |
spelling |
Publicationrp01164500rp00836500rp00595400rp00840500rp01371500rp01163500Medrano Sandonas L.Cuba-Supanta G.Gutierrez R.Landauro C.V.Rojas-Tapia J.Cuniberti G.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/859https://doi.org/10.1039/c8cp05592k2-s2.0-85060400792L. M. S. gratefully acknowledges the International Max Planck Research School Dynamical processes in atoms, molecules and solids and the Deutscher Akademischer Austauschdienst (DAAD) for the financial support. G. C. S. and C. V. L. are grateful to the National Council of Science and Technology (CONCYTEC) from Peru for the financial support through the Doctoral Program for Peruvian Universities (No. 218-2014-FONDECYT) and the Peruvian Excellence Center Program, respectively. This work has also been partly supported by the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden”. We acknowledge the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for computational resources. Open Access funding provided by the Max Planck Society.BNC heteronanotubes are promising materials for the design of nanoscale thermoelectric devices. In particular, the structural BN doping pattern can be exploited to control the electrical and thermal transport properties of BNC nanostructures. We here address the thermoelectric transport properties of (6,6)-BNC heteronanotubes with helical and horizontal BN doping patterns. For this, we use a density functional tight-binding method combined with the Green's function technique. Our results show that the electron transmission is reduced and the electronic bandgap increased as a function of the BN concentration for different doping distribution patterns, so that (6,6)-BNC heteronanotubes become semiconducting with a tunable bandgap. The thermal conductance of helical (6,6)-BNC heteronanotubes, which is dominated by phonons, is weakly dependent on BN concentration in the range of 30–80%. Also, the Seebeck coefficient is enhanced by increasing the concentration of helical BN strips. In particular, helical (6,6)-BNC heteronanotubes with a high BN concentration (>20%) display a larger figure of merit compared to other doping distributions and, for a concentration of 50%, reach values up to 2.3 times and 3.4 times the corresponding values of a CNT at 300 K and 800 K, respectively. Our study yields new insights into the parameters tuning the thermoelectric efficiency and thus provides a starting point for designing thermoelectric devices based on BNC nanostructures.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengRoyal Society of ChemistryPhysical Chemistry Chemical Physicsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/3.0/transport propertiesnanoscale thermoelectric devices-1BNC heteronanotubes-1https://purl.org/pe-repo/ocde/ford#2.03.00-1Doping engineering of thermoelectric transport in BNC heteronanotubesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/859oai:repositorio.concytec.gob.pe:20.500.12390/8592024-05-30 15:23:05.796https://creativecommons.org/licenses/by/3.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="af8688f2-8351-4a49-8afb-c1acd88e4e5d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Doping engineering of thermoelectric transport in BNC heteronanotubes</Title> <PublishedIn> <Publication> <Title>Physical Chemistry Chemical Physics</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1039/c8cp05592k</DOI> <SCP-Number>2-s2.0-85060400792</SCP-Number> <Authors> <Author> <DisplayName>Medrano Sandonas L.</DisplayName> <Person id="rp01164" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cuba-Supanta G.</DisplayName> <Person id="rp00836" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gutierrez R.</DisplayName> <Person id="rp00595" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Landauro C.V.</DisplayName> <Person id="rp00840" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rojas-Tapia J.</DisplayName> <Person id="rp01371" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cuniberti G.</DisplayName> <Person id="rp01163" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Royal Society of Chemistry</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/3.0/</License> <Keyword>transport properties</Keyword> <Keyword>nanoscale thermoelectric devices</Keyword> <Keyword>BNC heteronanotubes</Keyword> <Abstract>BNC heteronanotubes are promising materials for the design of nanoscale thermoelectric devices. In particular, the structural BN doping pattern can be exploited to control the electrical and thermal transport properties of BNC nanostructures. We here address the thermoelectric transport properties of (6,6)-BNC heteronanotubes with helical and horizontal BN doping patterns. For this, we use a density functional tight-binding method combined with the Green's function technique. Our results show that the electron transmission is reduced and the electronic bandgap increased as a function of the BN concentration for different doping distribution patterns, so that (6,6)-BNC heteronanotubes become semiconducting with a tunable bandgap. The thermal conductance of helical (6,6)-BNC heteronanotubes, which is dominated by phonons, is weakly dependent on BN concentration in the range of 30–80%. Also, the Seebeck coefficient is enhanced by increasing the concentration of helical BN strips. In particular, helical (6,6)-BNC heteronanotubes with a high BN concentration (>20%) display a larger figure of merit compared to other doping distributions and, for a concentration of 50%, reach values up to 2.3 times and 3.4 times the corresponding values of a CNT at 300 K and 800 K, respectively. Our study yields new insights into the parameters tuning the thermoelectric efficiency and thus provides a starting point for designing thermoelectric devices based on BNC nanostructures.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.461011 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).