Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]

Descripción del Articulo

El presente trabajo fue desarrollado gracias a la Universidad Nacional de Ingeniería y a los fondos FONDECYT del programa Ciencia Activa (CONCYTEC).
Detalles Bibliográficos
Autores: Romero N.M.L., Iquira J.A.F., Trigoso A.T., Medrano Y.N.
Formato: objeto de conferencia
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/861
Enlace del recurso:https://hdl.handle.net/20.500.12390/861
https://doi.org/10.18687/LACCEI2018.1.1.494
Nivel de acceso:acceso abierto
Materia:Parallel Computing
Cluster
CPU
GPU
n-BODY MPI
CUDA
https://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_7d61926b54c53640dd47fcc077c672c3
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/861
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]
title Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]
spellingShingle Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]
Romero N.M.L.
Parallel Computing
Cluster
CPU
GPU
n-BODY MPI
CUDA
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]
title_full Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]
title_fullStr Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]
title_full_unstemmed Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]
title_sort Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]
author Romero N.M.L.
author_facet Romero N.M.L.
Iquira J.A.F.
Trigoso A.T.
Medrano Y.N.
author_role author
author2 Iquira J.A.F.
Trigoso A.T.
Medrano Y.N.
author2_role author
author
author
dc.contributor.author.fl_str_mv Romero N.M.L.
Iquira J.A.F.
Trigoso A.T.
Medrano Y.N.
dc.subject.none.fl_str_mv Parallel Computing
topic Parallel Computing
Cluster
CPU
GPU
n-BODY MPI
CUDA
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Cluster
CPU
GPU
n-BODY MPI
CUDA
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description El presente trabajo fue desarrollado gracias a la Universidad Nacional de Ingeniería y a los fondos FONDECYT del programa Ciencia Activa (CONCYTEC).
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.isbn.none.fl_str_mv urn:isbn:9780999344316
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/861
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18687/LACCEI2018.1.1.494
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85057464979
identifier_str_mv urn:isbn:9780999344316
2-s2.0-85057464979
url https://hdl.handle.net/20.500.12390/861
https://doi.org/10.18687/LACCEI2018.1.1.494
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.publisher.none.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
publisher.none.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175656461565952
spelling Publicationrp02270600rp02271600rp02272600rp02269600Romero N.M.L.Iquira J.A.F.Trigoso A.T.Medrano Y.N.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018urn:isbn:9780999344316https://hdl.handle.net/20.500.12390/861https://doi.org/10.18687/LACCEI2018.1.1.4942-s2.0-85057464979El presente trabajo fue desarrollado gracias a la Universidad Nacional de Ingeniería y a los fondos FONDECYT del programa Ciencia Activa (CONCYTEC).In recent decades, the field of computing has been one of the areas that has developed the most and that allows to obtain other fields in which it is needed, simulate, cure or summarize data in the field of research, business and entertainment With the passage of time, this amount of processing increases more and more, the current needs of users, for example, upload approximately 400 hours of videos, YouTube every minute, 300 million photos on Facebook daily for each event generated in CERN generates 1 Mb of data, approximately 600 million events per second, so it has been necessary to increase the computational power and as it became increasingly difficult to have this computing capacity in a single machine, we started to work implementing computers, computers in Grid, and create technologies such as Big Data for the storage and processing of data. In this paper we present the implementation of a hybrid computer cluster that includes the use of CPUs and GPUs, details the construction and is used for GPUs, as well as an analysis of the results of the performance tests executed on the cluster.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecspaLatin American and Caribbean Consortium of Engineering InstitutionsProceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Parallel ComputingCluster-1CPU-1GPU-1n-BODY MPI-1CUDA-1https://purl.org/pe-repo/ocde/ford#2.02.04-1Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]info:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/861oai:repositorio.concytec.gob.pe:20.500.12390/8612024-05-30 15:59:33.634https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="943fbd2b-0130-4731-94d7-4611e78d15b2"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]</Title> <PublishedIn> <Publication> <Title>Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.18687/LACCEI2018.1.1.494</DOI> <SCP-Number>2-s2.0-85057464979</SCP-Number> <ISBN>urn:isbn:9780999344316</ISBN> <Authors> <Author> <DisplayName>Romero N.M.L.</DisplayName> <Person id="rp02270" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Iquira J.A.F.</DisplayName> <Person id="rp02271" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Trigoso A.T.</DisplayName> <Person id="rp02272" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Medrano Y.N.</DisplayName> <Person id="rp02269" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Latin American and Caribbean Consortium of Engineering Institutions</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Parallel Computing</Keyword> <Keyword>Cluster</Keyword> <Keyword>CPU</Keyword> <Keyword>GPU</Keyword> <Keyword>n-BODY MPI</Keyword> <Keyword>CUDA</Keyword> <Abstract>In recent decades, the field of computing has been one of the areas that has developed the most and that allows to obtain other fields in which it is needed, simulate, cure or summarize data in the field of research, business and entertainment With the passage of time, this amount of processing increases more and more, the current needs of users, for example, upload approximately 400 hours of videos, YouTube every minute, 300 million photos on Facebook daily for each event generated in CERN generates 1 Mb of data, approximately 600 million events per second, so it has been necessary to increase the computational power and as it became increasingly difficult to have this computing capacity in a single machine, we started to work implementing computers, computers in Grid, and create technologies such as Big Data for the storage and processing of data. In this paper we present the implementation of a hybrid computer cluster that includes the use of CPUs and GPUs, details the construction and is used for GPUs, as well as an analysis of the results of the performance tests executed on the cluster.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.439101
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).