Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]
Descripción del Articulo
El presente trabajo fue desarrollado gracias a la Universidad Nacional de Ingeniería y a los fondos FONDECYT del programa Ciencia Activa (CONCYTEC).
Autores: | , , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2018 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/861 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/861 https://doi.org/10.18687/LACCEI2018.1.1.494 |
Nivel de acceso: | acceso abierto |
Materia: | Parallel Computing Cluster CPU GPU n-BODY MPI CUDA https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
CONC_7d61926b54c53640dd47fcc077c672c3 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/861 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body] |
title |
Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body] |
spellingShingle |
Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body] Romero N.M.L. Parallel Computing Cluster CPU GPU n-BODY MPI CUDA https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body] |
title_full |
Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body] |
title_fullStr |
Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body] |
title_full_unstemmed |
Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body] |
title_sort |
Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body] |
author |
Romero N.M.L. |
author_facet |
Romero N.M.L. Iquira J.A.F. Trigoso A.T. Medrano Y.N. |
author_role |
author |
author2 |
Iquira J.A.F. Trigoso A.T. Medrano Y.N. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Romero N.M.L. Iquira J.A.F. Trigoso A.T. Medrano Y.N. |
dc.subject.none.fl_str_mv |
Parallel Computing |
topic |
Parallel Computing Cluster CPU GPU n-BODY MPI CUDA https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.es_PE.fl_str_mv |
Cluster CPU GPU n-BODY MPI CUDA |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
El presente trabajo fue desarrollado gracias a la Universidad Nacional de Ingeniería y a los fondos FONDECYT del programa Ciencia Activa (CONCYTEC). |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.isbn.none.fl_str_mv |
urn:isbn:9780999344316 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/861 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18687/LACCEI2018.1.1.494 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85057464979 |
identifier_str_mv |
urn:isbn:9780999344316 2-s2.0-85057464979 |
url |
https://hdl.handle.net/20.500.12390/861 https://doi.org/10.18687/LACCEI2018.1.1.494 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.none.fl_str_mv |
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.publisher.none.fl_str_mv |
Latin American and Caribbean Consortium of Engineering Institutions |
publisher.none.fl_str_mv |
Latin American and Caribbean Consortium of Engineering Institutions |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175656461565952 |
spelling |
Publicationrp02270600rp02271600rp02272600rp02269600Romero N.M.L.Iquira J.A.F.Trigoso A.T.Medrano Y.N.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018urn:isbn:9780999344316https://hdl.handle.net/20.500.12390/861https://doi.org/10.18687/LACCEI2018.1.1.4942-s2.0-85057464979El presente trabajo fue desarrollado gracias a la Universidad Nacional de Ingeniería y a los fondos FONDECYT del programa Ciencia Activa (CONCYTEC).In recent decades, the field of computing has been one of the areas that has developed the most and that allows to obtain other fields in which it is needed, simulate, cure or summarize data in the field of research, business and entertainment With the passage of time, this amount of processing increases more and more, the current needs of users, for example, upload approximately 400 hours of videos, YouTube every minute, 300 million photos on Facebook daily for each event generated in CERN generates 1 Mb of data, approximately 600 million events per second, so it has been necessary to increase the computational power and as it became increasingly difficult to have this computing capacity in a single machine, we started to work implementing computers, computers in Grid, and create technologies such as Big Data for the storage and processing of data. In this paper we present the implementation of a hybrid computer cluster that includes the use of CPUs and GPUs, details the construction and is used for GPUs, as well as an analysis of the results of the performance tests executed on the cluster.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecspaLatin American and Caribbean Consortium of Engineering InstitutionsProceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Parallel ComputingCluster-1CPU-1GPU-1n-BODY MPI-1CUDA-1https://purl.org/pe-repo/ocde/ford#2.02.04-1Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]info:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/861oai:repositorio.concytec.gob.pe:20.500.12390/8612024-05-30 15:59:33.634https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="943fbd2b-0130-4731-94d7-4611e78d15b2"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Performance tests on the CPU and GPU clusters using N-body simulation [Pruebas de Rendimiento Sobre el Clúster de CPUs y GPUs Empleando Simulación N-body]</Title> <PublishedIn> <Publication> <Title>Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.18687/LACCEI2018.1.1.494</DOI> <SCP-Number>2-s2.0-85057464979</SCP-Number> <ISBN>urn:isbn:9780999344316</ISBN> <Authors> <Author> <DisplayName>Romero N.M.L.</DisplayName> <Person id="rp02270" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Iquira J.A.F.</DisplayName> <Person id="rp02271" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Trigoso A.T.</DisplayName> <Person id="rp02272" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Medrano Y.N.</DisplayName> <Person id="rp02269" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Latin American and Caribbean Consortium of Engineering Institutions</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Parallel Computing</Keyword> <Keyword>Cluster</Keyword> <Keyword>CPU</Keyword> <Keyword>GPU</Keyword> <Keyword>n-BODY MPI</Keyword> <Keyword>CUDA</Keyword> <Abstract>In recent decades, the field of computing has been one of the areas that has developed the most and that allows to obtain other fields in which it is needed, simulate, cure or summarize data in the field of research, business and entertainment With the passage of time, this amount of processing increases more and more, the current needs of users, for example, upload approximately 400 hours of videos, YouTube every minute, 300 million photos on Facebook daily for each event generated in CERN generates 1 Mb of data, approximately 600 million events per second, so it has been necessary to increase the computational power and as it became increasingly difficult to have this computing capacity in a single machine, we started to work implementing computers, computers in Grid, and create technologies such as Big Data for the storage and processing of data. In this paper we present the implementation of a hybrid computer cluster that includes the use of CPUs and GPUs, details the construction and is used for GPUs, as well as an analysis of the results of the performance tests executed on the cluster.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).