Silver enhances hematite nanoparticles based ethanol sensor response and selectivity at room temperature

Descripción del Articulo

Gas sensors are fundamental for continuous online monitoring of volatile organic com-pounds. Gas sensors based on semiconductor materials have demonstrated to be highly competitive, but are generally made of expensive materials and operate at high temperatures, which are draw-backs of these technolo...

Descripción completa

Detalles Bibliográficos
Autores: Garcia-Osorio, Daniel, Hidalgo-Falla, Pilar, Peres, Henrique E. M., Gonçalves, Josue M., Araki, Koiti, Garcia-Segura, Sergi, Picasso, Gino
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2410
Enlace del recurso:https://hdl.handle.net/20.500.12390/2410
https://doi.org/10.3390/s21020440
Nivel de acceso:acceso abierto
Materia:Silver decorated hematite
Alcohol sensor
Hematite (α-Fe2O3 )
Metal oxide gas sensors
Nano-enabled gas sensors
http://purl.org/pe-repo/ocde/ford#1.06.03
Descripción
Sumario:Gas sensors are fundamental for continuous online monitoring of volatile organic com-pounds. Gas sensors based on semiconductor materials have demonstrated to be highly competitive, but are generally made of expensive materials and operate at high temperatures, which are draw-backs of these technologies. Herein is described a novel ethanol sensor for room temperature (25◦C) measurements based on hematite (α-Fe2O3 )/silver nanoparticles. The AgNPs were shown to increase the oxide semiconductor charge carrier density, but especially to enhance the ethanol adsorption rate boosting the selectivity and sensitivity, thus allowing quantification of ethanol vapor in 2–35 mg L−1 range with an excellent linear relationship. In addition, the α-Fe2O3/Ag 3.0 wt% nanocomposite is cheap, and easy to make and process, imparting high perspectives for real applications in breath analyzers and/or sensors in food and beverage industries. This work contributes to the advance of gas sensing at ambient temperature as a competitive alternative for quantification of conventional volatile organic compounds. © 2021 by the authors. Li-censee MDPI, Basel, Switzerland.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).