Terahertz Imaging and Machine Learning in the Classification of Coffee Beans
Descripción del Articulo
Acknowledgments. P. Uceda and H. Yoshida acknowledge the financial support from Project Concytec – The World Bank “Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovación Tecnológica” 8682-PE through Fondecyt [contract no 006–2018].
Autores: | , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2021 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/3062 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/3062 https://doi.org/10.1007/978-3-030-75680-2_94 |
Nivel de acceso: | acceso abierto |
Materia: | THz spectroscopy Chemometrics Coffee post-harvest Supervised learning https://purl.org/pe-repo/ocde/ford#2.02.022 |
id |
CONC_684d3a8ebbd5f82ee303ce34c32ee2a9 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/3062 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Terahertz Imaging and Machine Learning in the Classification of Coffee Beans |
title |
Terahertz Imaging and Machine Learning in the Classification of Coffee Beans |
spellingShingle |
Terahertz Imaging and Machine Learning in the Classification of Coffee Beans Uceda P. THz spectroscopy Chemometrics Coffee post-harvest Supervised learning https://purl.org/pe-repo/ocde/ford#2.02.022 |
title_short |
Terahertz Imaging and Machine Learning in the Classification of Coffee Beans |
title_full |
Terahertz Imaging and Machine Learning in the Classification of Coffee Beans |
title_fullStr |
Terahertz Imaging and Machine Learning in the Classification of Coffee Beans |
title_full_unstemmed |
Terahertz Imaging and Machine Learning in the Classification of Coffee Beans |
title_sort |
Terahertz Imaging and Machine Learning in the Classification of Coffee Beans |
author |
Uceda P. |
author_facet |
Uceda P. Yoshida H. Castillo P. |
author_role |
author |
author2 |
Yoshida H. Castillo P. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Uceda P. Yoshida H. Castillo P. |
dc.subject.none.fl_str_mv |
THz spectroscopy |
topic |
THz spectroscopy Chemometrics Coffee post-harvest Supervised learning https://purl.org/pe-repo/ocde/ford#2.02.022 |
dc.subject.es_PE.fl_str_mv |
Chemometrics Coffee post-harvest Supervised learning |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.022 |
description |
Acknowledgments. P. Uceda and H. Yoshida acknowledge the financial support from Project Concytec – The World Bank “Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovación Tecnológica” 8682-PE through Fondecyt [contract no 006–2018]. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/3062 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-75680-2_94 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85111350964 |
url |
https://hdl.handle.net/20.500.12390/3062 https://doi.org/10.1007/978-3-030-75680-2_94 |
identifier_str_mv |
2-s2.0-85111350964 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Smart Innovation, Systems and Technologies |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175693683916800 |
spelling |
Publicationrp08821600rp08822600rp08820600Uceda P.Yoshida H.Castillo P.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/3062https://doi.org/10.1007/978-3-030-75680-2_942-s2.0-85111350964Acknowledgments. P. Uceda and H. Yoshida acknowledge the financial support from Project Concytec – The World Bank “Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovación Tecnológica” 8682-PE through Fondecyt [contract no 006–2018].The geographical origin of coffee beans represents an effect on the attributes and quality of the product due to the different soil and weather conditions for a specific location. Therefore, the development of methods for rapid classification and authentication of coffee beans based on their geographical origin is essential. This research was done with the purpose of determining the capacity of coffee (Coffea arabica) varieties classification with the use of Terahertz (THz) imaging and machine learning. THz images of coffee beans samples from 3 different geographical origins were acquired with a time-domain spectrometer and then used to measure the classification performance of methods such as neural networks, random forests, and support vector machines. The results obtained reached an accuracy up to 91.2%, which showed that the use of THz imaging and machine learning is an effective method for the non-destructive analysis of coffee variables and classification based on geographical origin. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer Science and Business Media Deutschland GmbHSmart Innovation, Systems and Technologiesinfo:eu-repo/semantics/openAccessTHz spectroscopyChemometrics-1Coffee post-harvest-1Supervised learning-1https://purl.org/pe-repo/ocde/ford#2.02.022-1Terahertz Imaging and Machine Learning in the Classification of Coffee Beansinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/3062oai:repositorio.concytec.gob.pe:20.500.12390/30622024-05-30 16:13:38.883http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="ada44a54-2aae-4fa4-a9b6-780f4b11523c"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Terahertz Imaging and Machine Learning in the Classification of Coffee Beans</Title> <PublishedIn> <Publication> <Title>Smart Innovation, Systems and Technologies</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-75680-2_94</DOI> <SCP-Number>2-s2.0-85111350964</SCP-Number> <Authors> <Author> <DisplayName>Uceda P.</DisplayName> <Person id="rp08821" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Yoshida H.</DisplayName> <Person id="rp08822" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Castillo P.</DisplayName> <Person id="rp08820" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Science and Business Media Deutschland GmbH</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>THz spectroscopy</Keyword> <Keyword>Chemometrics</Keyword> <Keyword>Coffee post-harvest</Keyword> <Keyword>Supervised learning</Keyword> <Abstract>The geographical origin of coffee beans represents an effect on the attributes and quality of the product due to the different soil and weather conditions for a specific location. Therefore, the development of methods for rapid classification and authentication of coffee beans based on their geographical origin is essential. This research was done with the purpose of determining the capacity of coffee (Coffea arabica) varieties classification with the use of Terahertz (THz) imaging and machine learning. THz images of coffee beans samples from 3 different geographical origins were acquired with a time-domain spectrometer and then used to measure the classification performance of methods such as neural networks, random forests, and support vector machines. The results obtained reached an accuracy up to 91.2%, which showed that the use of THz imaging and machine learning is an effective method for the non-destructive analysis of coffee variables and classification based on geographical origin. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).