FP-AK-QIEA-R for Multi-Objective Optimization
Descripción del Articulo
The Evolutionary Algorithms have main features like: population, evolutionary operations (crossover, mate, mutation and others). Most of them are based on randomness and follow a criteria using fitness like selector. The FP-AK-QIEA-R uses probability density function according to best of initial pop...
| Autor: | |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2016 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1075 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/1075 https://doi.org/10.1145/3022702.3022714 |
| Nivel de acceso: | acceso abierto |
| Materia: | Herencia Genética Algoritmo https://purl.org/pe-repo/ocde/ford#1.06.07 |
| id |
CONC_66ac5c3af432e089e1b165f6e215e1b1 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1075 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| spelling |
Publicationrp03045600Saire, JEC2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/1075https://doi.org/10.1145/3022702.3022714433384100014The Evolutionary Algorithms have main features like: population, evolutionary operations (crossover, mate, mutation and others). Most of them are based on randomness and follow a criteria using fitness like selector. The FP-AK-QIEA-R uses probability density function according to best of initial population to sample new population and uses rewarding criteria to sample around the best of every iteration using cumulative density function estimated for Akima interpolation, it was used for mono-objective problems showing good results. The proposal uses the algorithm FP-AK-QIEA-R and add Pareto dominance to experiment with multi-objective problems. The performed experiments use some benchmark functions from the literature and initial results shows a promissory way for the algorithm.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengAssociation for Computing Machineryinfo:eu-repo/semantics/openAccessHerenciaGenética-1Algoritmo-1https://purl.org/pe-repo/ocde/ford#1.06.07-1FP-AK-QIEA-R for Multi-Objective Optimizationinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1075oai:repositorio.concytec.gob.pe:20.500.12390/10752024-05-30 16:00:59.128http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="d4dd8e44-ca8f-4f13-a9fd-8e3f737d5d01"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>FP-AK-QIEA-R for Multi-Objective Optimization</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <DOI>https://doi.org/10.1145/3022702.3022714</DOI> <ISI-Number>433384100014</ISI-Number> <Authors> <Author> <DisplayName>Saire, JEC</DisplayName> <Person id="rp03045" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Association for Computing Machinery</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Herencia</Keyword> <Keyword>Genética</Keyword> <Keyword>Algoritmo</Keyword> <Abstract>The Evolutionary Algorithms have main features like: population, evolutionary operations (crossover, mate, mutation and others). Most of them are based on randomness and follow a criteria using fitness like selector. The FP-AK-QIEA-R uses probability density function according to best of initial population to sample new population and uses rewarding criteria to sample around the best of every iteration using cumulative density function estimated for Akima interpolation, it was used for mono-objective problems showing good results. The proposal uses the algorithm FP-AK-QIEA-R and add Pareto dominance to experiment with multi-objective problems. The performed experiments use some benchmark functions from the literature and initial results shows a promissory way for the algorithm.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| dc.title.none.fl_str_mv |
FP-AK-QIEA-R for Multi-Objective Optimization |
| title |
FP-AK-QIEA-R for Multi-Objective Optimization |
| spellingShingle |
FP-AK-QIEA-R for Multi-Objective Optimization Saire, JEC Herencia Genética Algoritmo https://purl.org/pe-repo/ocde/ford#1.06.07 |
| title_short |
FP-AK-QIEA-R for Multi-Objective Optimization |
| title_full |
FP-AK-QIEA-R for Multi-Objective Optimization |
| title_fullStr |
FP-AK-QIEA-R for Multi-Objective Optimization |
| title_full_unstemmed |
FP-AK-QIEA-R for Multi-Objective Optimization |
| title_sort |
FP-AK-QIEA-R for Multi-Objective Optimization |
| author |
Saire, JEC |
| author_facet |
Saire, JEC |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Saire, JEC |
| dc.subject.none.fl_str_mv |
Herencia |
| topic |
Herencia Genética Algoritmo https://purl.org/pe-repo/ocde/ford#1.06.07 |
| dc.subject.es_PE.fl_str_mv |
Genética Algoritmo |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.06.07 |
| description |
The Evolutionary Algorithms have main features like: population, evolutionary operations (crossover, mate, mutation and others). Most of them are based on randomness and follow a criteria using fitness like selector. The FP-AK-QIEA-R uses probability density function according to best of initial population to sample new population and uses rewarding criteria to sample around the best of every iteration using cumulative density function estimated for Akima interpolation, it was used for mono-objective problems showing good results. The proposal uses the algorithm FP-AK-QIEA-R and add Pareto dominance to experiment with multi-objective problems. The performed experiments use some benchmark functions from the literature and initial results shows a promissory way for the algorithm. |
| publishDate |
2016 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2016 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1075 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1145/3022702.3022714 |
| dc.identifier.isi.none.fl_str_mv |
433384100014 |
| url |
https://hdl.handle.net/20.500.12390/1075 https://doi.org/10.1145/3022702.3022714 |
| identifier_str_mv |
433384100014 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Association for Computing Machinery |
| publisher.none.fl_str_mv |
Association for Computing Machinery |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883034522779648 |
| score |
13.377223 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).