Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis

Descripción del Articulo

We develop a band-fluctuations model which describes the absorption coefficient in the fundamental absorption region for direct and indirect electronic transitions in disordered semiconductor materials. The model accurately describes both the Urbach tail and absorption edge regions observed in such...

Descripción completa

Detalles Bibliográficos
Autores: Guerra Torres, Jorge Andrés, Tejada A., Töfflinger J.A., Grieseler R., Korte L.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2723
Enlace del recurso:https://hdl.handle.net/20.500.12390/2723
https://doi.org/10.1088/1361-6463/aaf963
Nivel de acceso:acceso abierto
Materia:Urbach
band-fluctuations
bandgap
fundamental absorption
http://purl.org/pe-repo/ocde/ford#2.09.03
id CONC_63046a79077e3f64d198a5cc0f3b3c93
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2723
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis
title Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis
spellingShingle Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis
Guerra Torres, Jorge Andrés
Urbach
band-fluctuations
bandgap
fundamental absorption
http://purl.org/pe-repo/ocde/ford#2.09.03
title_short Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis
title_full Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis
title_fullStr Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis
title_full_unstemmed Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis
title_sort Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis
author Guerra Torres, Jorge Andrés
author_facet Guerra Torres, Jorge Andrés
Tejada A.
Töfflinger J.A.
Grieseler R.
Korte L.
author_role author
author2 Tejada A.
Töfflinger J.A.
Grieseler R.
Korte L.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Guerra Torres, Jorge Andrés
Tejada A.
Töfflinger J.A.
Grieseler R.
Korte L.
dc.subject.none.fl_str_mv Urbach
topic Urbach
band-fluctuations
bandgap
fundamental absorption
http://purl.org/pe-repo/ocde/ford#2.09.03
dc.subject.es_PE.fl_str_mv band-fluctuations
bandgap
fundamental absorption
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.09.03
description We develop a band-fluctuations model which describes the absorption coefficient in the fundamental absorption region for direct and indirect electronic transitions in disordered semiconductor materials. The model accurately describes both the Urbach tail and absorption edge regions observed in such materials near the mobility edge in a single equation with only three fitting parameters. An asymptotic analysis leads to the universally observed exponential tail below the bandgap energy and to the absorption edge model at zero Kelvin above it, for either direct or indirect electronic transitions. The latter feature allows the discrimination between the absorption edge and absorption tails, thus yielding more accurate bandgap values when fitting optical absorption data. We examine the general character of the model using a dimensionless joint density of states formalism with a quantitative analysis of a large amount of optical absorption data. Both heavily doped p-type GaAs and nano-crystalline Ga 1-x Mn x N, as examples for direct bandgap materials, as well as amorphous Si:H x , SiC:H x and SiN x , are modeled successfully with this approach. We contrast our model with previously reported empirical models, showing in our case a suitable absorption coefficient shape capable of describing various distinct materials while also maintaining the universality of the exponential absorption tail and absorption edge. © 2019 IOP Publishing Ltd.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2723
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1088/1361-6463/aaf963
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85060236313
url https://hdl.handle.net/20.500.12390/2723
https://doi.org/10.1088/1361-6463/aaf963
identifier_str_mv 2-s2.0-85060236313
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Journal of Physics D: Applied Physics
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Physics Publishing
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175634447761408
spelling Publicationrp00710600rp01802600rp00712600rp01106600rp01800600Guerra Torres, Jorge AndrésTejada A.Töfflinger J.A.Grieseler R.Korte L.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2723https://doi.org/10.1088/1361-6463/aaf9632-s2.0-85060236313We develop a band-fluctuations model which describes the absorption coefficient in the fundamental absorption region for direct and indirect electronic transitions in disordered semiconductor materials. The model accurately describes both the Urbach tail and absorption edge regions observed in such materials near the mobility edge in a single equation with only three fitting parameters. An asymptotic analysis leads to the universally observed exponential tail below the bandgap energy and to the absorption edge model at zero Kelvin above it, for either direct or indirect electronic transitions. The latter feature allows the discrimination between the absorption edge and absorption tails, thus yielding more accurate bandgap values when fitting optical absorption data. We examine the general character of the model using a dimensionless joint density of states formalism with a quantitative analysis of a large amount of optical absorption data. Both heavily doped p-type GaAs and nano-crystalline Ga 1-x Mn x N, as examples for direct bandgap materials, as well as amorphous Si:H x , SiC:H x and SiN x , are modeled successfully with this approach. We contrast our model with previously reported empirical models, showing in our case a suitable absorption coefficient shape capable of describing various distinct materials while also maintaining the universality of the exponential absorption tail and absorption edge. © 2019 IOP Publishing Ltd.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Physics PublishingJournal of Physics D: Applied Physicsinfo:eu-repo/semantics/openAccessUrbachband-fluctuations-1bandgap-1fundamental absorption-1http://purl.org/pe-repo/ocde/ford#2.09.03-1Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysisinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2723oai:repositorio.concytec.gob.pe:20.500.12390/27232024-05-30 15:44:33.925http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="897be8a6-2685-48ba-a4c3-84471d2c9c80"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis</Title> <PublishedIn> <Publication> <Title>Journal of Physics D: Applied Physics</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1088/1361-6463/aaf963</DOI> <SCP-Number>2-s2.0-85060236313</SCP-Number> <Authors> <Author> <DisplayName>Guerra Torres, Jorge Andrés</DisplayName> <Person id="rp00710" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Tejada A.</DisplayName> <Person id="rp01802" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Töfflinger J.A.</DisplayName> <Person id="rp00712" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Grieseler R.</DisplayName> <Person id="rp01106" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Korte L.</DisplayName> <Person id="rp01800" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Physics Publishing</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Urbach</Keyword> <Keyword>band-fluctuations</Keyword> <Keyword>bandgap</Keyword> <Keyword>fundamental absorption</Keyword> <Abstract>We develop a band-fluctuations model which describes the absorption coefficient in the fundamental absorption region for direct and indirect electronic transitions in disordered semiconductor materials. The model accurately describes both the Urbach tail and absorption edge regions observed in such materials near the mobility edge in a single equation with only three fitting parameters. An asymptotic analysis leads to the universally observed exponential tail below the bandgap energy and to the absorption edge model at zero Kelvin above it, for either direct or indirect electronic transitions. The latter feature allows the discrimination between the absorption edge and absorption tails, thus yielding more accurate bandgap values when fitting optical absorption data. We examine the general character of the model using a dimensionless joint density of states formalism with a quantitative analysis of a large amount of optical absorption data. Both heavily doped p-type GaAs and nano-crystalline Ga 1-x Mn x N, as examples for direct bandgap materials, as well as amorphous Si:H x , SiC:H x and SiN x , are modeled successfully with this approach. We contrast our model with previously reported empirical models, showing in our case a suitable absorption coefficient shape capable of describing various distinct materials while also maintaining the universality of the exponential absorption tail and absorption edge. © 2019 IOP Publishing Ltd.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).