Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis

Descripción del Articulo

We develop a band-fluctuations model which describes the absorption coefficient in the fundamental absorption region for direct and indirect electronic transitions in disordered semiconductor materials. The model accurately describes both the Urbach tail and absorption edge regions observed in such...

Descripción completa

Detalles Bibliográficos
Autores: Guerra Torres, Jorge Andrés, Tejada A., Töfflinger J.A., Grieseler R., Korte L.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2723
Enlace del recurso:https://hdl.handle.net/20.500.12390/2723
https://doi.org/10.1088/1361-6463/aaf963
Nivel de acceso:acceso abierto
Materia:Urbach
band-fluctuations
bandgap
fundamental absorption
http://purl.org/pe-repo/ocde/ford#2.09.03
Descripción
Sumario:We develop a band-fluctuations model which describes the absorption coefficient in the fundamental absorption region for direct and indirect electronic transitions in disordered semiconductor materials. The model accurately describes both the Urbach tail and absorption edge regions observed in such materials near the mobility edge in a single equation with only three fitting parameters. An asymptotic analysis leads to the universally observed exponential tail below the bandgap energy and to the absorption edge model at zero Kelvin above it, for either direct or indirect electronic transitions. The latter feature allows the discrimination between the absorption edge and absorption tails, thus yielding more accurate bandgap values when fitting optical absorption data. We examine the general character of the model using a dimensionless joint density of states formalism with a quantitative analysis of a large amount of optical absorption data. Both heavily doped p-type GaAs and nano-crystalline Ga 1-x Mn x N, as examples for direct bandgap materials, as well as amorphous Si:H x , SiC:H x and SiN x , are modeled successfully with this approach. We contrast our model with previously reported empirical models, showing in our case a suitable absorption coefficient shape capable of describing various distinct materials while also maintaining the universality of the exponential absorption tail and absorption edge. © 2019 IOP Publishing Ltd.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).