Reconocimiento de acciones cotidianas
Descripción del Articulo
The proposed method consists of three parts: features extraction, the use of bag of words and classification. For the first stage, we use the STIP descriptor for the intensity channel and HOG descriptor for the depth channel, MFCC and Spectrogram for the audio channel. In the next stage, it was used...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2016 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2060 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2060 |
Nivel de acceso: | acceso abierto |
Materia: | SVM STIP HOG Spectogram https://purl.org/pe-repo/ocde/ford#1.02.01 |
id |
CONC_551e9da2aebb7094248f856b4723d31e |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2060 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
spelling |
Publicationrp05077600Vizconde La Motta, Kelly2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/2060The proposed method consists of three parts: features extraction, the use of bag of words and classification. For the first stage, we use the STIP descriptor for the intensity channel and HOG descriptor for the depth channel, MFCC and Spectrogram for the audio channel. In the next stage, it was used the bag of words approach in each type of information separately. We use the K-means algorithm to generate the dictionary. Finally, a SVM classi fier labels the visual word histograms. For the experiments, we manually segmented the videos in clips containing a single action, achieving a recognition rate of 94.4% on Kitchen-UCSP dataset, our own dataset and a recognition rate of 88% on HMA videos.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecspaUniversidad Católica San Pabloinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/SVMSTIP-1HOG-1HOG-1Spectogram-1https://purl.org/pe-repo/ocde/ford#1.02.01-1Reconocimiento de acciones cotidianasinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2060oai:repositorio.concytec.gob.pe:20.500.12390/20602024-05-30 15:41:44.406http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="5715fb80-5de8-4540-91f2-ee6936c3823e"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Reconocimiento de acciones cotidianas</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <Authors> <Author> <DisplayName>Vizconde La Motta, Kelly</DisplayName> <Person id="rp05077" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Universidad Católica San Pablo</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>SVM</Keyword> <Keyword>STIP</Keyword> <Keyword>HOG</Keyword> <Keyword>HOG</Keyword> <Keyword>Spectogram</Keyword> <Abstract>The proposed method consists of three parts: features extraction, the use of bag of words and classification. For the first stage, we use the STIP descriptor for the intensity channel and HOG descriptor for the depth channel, MFCC and Spectrogram for the audio channel. In the next stage, it was used the bag of words approach in each type of information separately. We use the K-means algorithm to generate the dictionary. Finally, a SVM classi fier labels the visual word histograms. For the experiments, we manually segmented the videos in clips containing a single action, achieving a recognition rate of 94.4% on Kitchen-UCSP dataset, our own dataset and a recognition rate of 88% on HMA videos.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
dc.title.none.fl_str_mv |
Reconocimiento de acciones cotidianas |
title |
Reconocimiento de acciones cotidianas |
spellingShingle |
Reconocimiento de acciones cotidianas Vizconde La Motta, Kelly SVM STIP HOG HOG Spectogram https://purl.org/pe-repo/ocde/ford#1.02.01 |
title_short |
Reconocimiento de acciones cotidianas |
title_full |
Reconocimiento de acciones cotidianas |
title_fullStr |
Reconocimiento de acciones cotidianas |
title_full_unstemmed |
Reconocimiento de acciones cotidianas |
title_sort |
Reconocimiento de acciones cotidianas |
author |
Vizconde La Motta, Kelly |
author_facet |
Vizconde La Motta, Kelly |
author_role |
author |
dc.contributor.author.fl_str_mv |
Vizconde La Motta, Kelly |
dc.subject.none.fl_str_mv |
SVM |
topic |
SVM STIP HOG HOG Spectogram https://purl.org/pe-repo/ocde/ford#1.02.01 |
dc.subject.es_PE.fl_str_mv |
STIP HOG HOG Spectogram |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
description |
The proposed method consists of three parts: features extraction, the use of bag of words and classification. For the first stage, we use the STIP descriptor for the intensity channel and HOG descriptor for the depth channel, MFCC and Spectrogram for the audio channel. In the next stage, it was used the bag of words approach in each type of information separately. We use the K-means algorithm to generate the dictionary. Finally, a SVM classi fier labels the visual word histograms. For the experiments, we manually segmented the videos in clips containing a single action, achieving a recognition rate of 94.4% on Kitchen-UCSP dataset, our own dataset and a recognition rate of 88% on HMA videos. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2060 |
url |
https://hdl.handle.net/20.500.12390/2060 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.publisher.none.fl_str_mv |
Universidad Católica San Pablo |
publisher.none.fl_str_mv |
Universidad Católica San Pablo |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175383315906560 |
score |
13.243791 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).