Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia
Descripción del Articulo
Neural self-organization is an innate feature of the brains of mammals and it isvery necessary for their operation. The most known artificial neural network models that use this characteristic are the Self-Organized Maps (SOM) and the Adaptive Resonance Theory (ART), but these models do not take the...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2018 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1678 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/1678 |
| Nivel de acceso: | acceso abierto |
| Materia: | Redes neuronales Multiagentes Aprendizaje por Refuerzo Auto- organización https://purl.org/pe-repo/ocde/ford#2.02.03 |
| id |
CONC_466a0d6fa19f7117f565274b21792b60 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1678 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia |
| title |
Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia |
| spellingShingle |
Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia Valdivia Ballesteros, Andre´ Mauricio Redes neuronales Multiagentes Aprendizaje por Refuerzo Aprendizaje por Refuerzo Auto- organización https://purl.org/pe-repo/ocde/ford#2.02.03 |
| title_short |
Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia |
| title_full |
Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia |
| title_fullStr |
Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia |
| title_full_unstemmed |
Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia |
| title_sort |
Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia |
| author |
Valdivia Ballesteros, Andre´ Mauricio |
| author_facet |
Valdivia Ballesteros, Andre´ Mauricio |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Valdivia Ballesteros, Andre´ Mauricio |
| dc.subject.none.fl_str_mv |
Redes neuronales |
| topic |
Redes neuronales Multiagentes Aprendizaje por Refuerzo Aprendizaje por Refuerzo Auto- organización https://purl.org/pe-repo/ocde/ford#2.02.03 |
| dc.subject.es_PE.fl_str_mv |
Multiagentes Aprendizaje por Refuerzo Aprendizaje por Refuerzo Auto- organización |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 |
| description |
Neural self-organization is an innate feature of the brains of mammals and it isvery necessary for their operation. The most known artificial neural network models that use this characteristic are the Self-Organized Maps (SOM) and the Adaptive Resonance Theory (ART), but these models do not take the neuron as a processing unit, as it’s biological counterpart does; besides these are models mostlyused for the unsupervised learning paradigm, this means that there aren’t robustself-organized models in the supervised learning paradigm. In other way, influence value reinforcement learning paradigm, used in multi-agent systems, prove thatagents can communicate among them, and can self-organize themselves to assigntasks, without interference.Motivated by the lack of features in the artificial neural networks, and taking intoaccount the influence values reinforcement algorithm, a new neural network modelis proposed, which is focused on solving supervised learning problems by usingreinforcement learning agents as neurons in our model; model that has the differentactivation functions as an important characteristic, because these are unique foreach neuron. This is also an important feature for self-organization.The neural agents will work in a discrete space, besides using a learning algorithm different from the backpropagation, which is used in many networks. Analgorithm inspired in the way the SOM networks propagate their knowledge isproposed, this way the neighboring states to the trained state can acquire its knowledge.In order to prove the functionality of this model, low dimensionality daya bases were used and their performance was compared by a multilayer perceptron,where in most of the databases its performance was improved. The creation of thisnew model is the base for further importance of this investigation is the concept ofneuron.To prove the model functionality, we used databases of low dimensionality, andwe compare its performance with multilayer perceptron, where in most of the databases the performance was improved. The creation of this novel model, is the basefor further research, where the fundamental importance of this work is the novelneural concept |
| publishDate |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2018 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1678 |
| url |
https://hdl.handle.net/20.500.12390/1678 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de San Agustín de Arequipa |
| publisher.none.fl_str_mv |
Universidad Nacional de San Agustín de Arequipa |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883073978597376 |
| spelling |
Publicationrp04575600Valdivia Ballesteros, Andre´ Mauricio2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/1678Neural self-organization is an innate feature of the brains of mammals and it isvery necessary for their operation. The most known artificial neural network models that use this characteristic are the Self-Organized Maps (SOM) and the Adaptive Resonance Theory (ART), but these models do not take the neuron as a processing unit, as it’s biological counterpart does; besides these are models mostlyused for the unsupervised learning paradigm, this means that there aren’t robustself-organized models in the supervised learning paradigm. In other way, influence value reinforcement learning paradigm, used in multi-agent systems, prove thatagents can communicate among them, and can self-organize themselves to assigntasks, without interference.Motivated by the lack of features in the artificial neural networks, and taking intoaccount the influence values reinforcement algorithm, a new neural network modelis proposed, which is focused on solving supervised learning problems by usingreinforcement learning agents as neurons in our model; model that has the differentactivation functions as an important characteristic, because these are unique foreach neuron. This is also an important feature for self-organization.The neural agents will work in a discrete space, besides using a learning algorithm different from the backpropagation, which is used in many networks. Analgorithm inspired in the way the SOM networks propagate their knowledge isproposed, this way the neighboring states to the trained state can acquire its knowledge.In order to prove the functionality of this model, low dimensionality daya bases were used and their performance was compared by a multilayer perceptron,where in most of the databases its performance was improved. The creation of thisnew model is the base for further importance of this investigation is the concept ofneuron.To prove the model functionality, we used databases of low dimensionality, andwe compare its performance with multilayer perceptron, where in most of the databases the performance was improved. The creation of this novel model, is the basefor further research, where the fundamental importance of this work is the novelneural conceptConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecspaUniversidad Nacional de San Agustín de Arequipainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Redes neuronalesMultiagentes-1Aprendizaje por Refuerzo-1Aprendizaje por Refuerzo-1Auto- organización-1https://purl.org/pe-repo/ocde/ford#2.02.03-1Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influenciainfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1678oai:repositorio.concytec.gob.pe:20.500.12390/16782024-05-30 16:04:42.959https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="324d45e9-7092-483a-b7db-55c470ba6c7a"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <Authors> <Author> <DisplayName>Valdivia Ballesteros, Andre´ Mauricio</DisplayName> <Person id="rp04575" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Universidad Nacional de San Agustín de Arequipa</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Redes neuronales</Keyword> <Keyword>Multiagentes</Keyword> <Keyword>Aprendizaje por Refuerzo</Keyword> <Keyword>Aprendizaje por Refuerzo</Keyword> <Keyword>Auto- organización</Keyword> <Abstract>Neural self-organization is an innate feature of the brains of mammals and it isvery necessary for their operation. The most known artificial neural network models that use this characteristic are the Self-Organized Maps (SOM) and the Adaptive Resonance Theory (ART), but these models do not take the neuron as a processing unit, as it’s biological counterpart does; besides these are models mostlyused for the unsupervised learning paradigm, this means that there aren’t robustself-organized models in the supervised learning paradigm. In other way, influence value reinforcement learning paradigm, used in multi-agent systems, prove thatagents can communicate among them, and can self-organize themselves to assigntasks, without interference.Motivated by the lack of features in the artificial neural networks, and taking intoaccount the influence values reinforcement algorithm, a new neural network modelis proposed, which is focused on solving supervised learning problems by usingreinforcement learning agents as neurons in our model; model that has the differentactivation functions as an important characteristic, because these are unique foreach neuron. This is also an important feature for self-organization.The neural agents will work in a discrete space, besides using a learning algorithm different from the backpropagation, which is used in many networks. Analgorithm inspired in the way the SOM networks propagate their knowledge isproposed, this way the neighboring states to the trained state can acquire its knowledge.In order to prove the functionality of this model, low dimensionality daya bases were used and their performance was compared by a multilayer perceptron,where in most of the databases its performance was improved. The creation of thisnew model is the base for further importance of this investigation is the concept ofneuron.To prove the model functionality, we used databases of low dimensionality, andwe compare its performance with multilayer perceptron, where in most of the databases the performance was improved. The creation of this novel model, is the basefor further research, where the fundamental importance of this work is the novelneural concept</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.434496 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).