Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia

Descripción del Articulo

Neural self-organization is an innate feature of the brains of mammals and it isvery necessary for their operation. The most known artificial neural network models that use this characteristic are the Self-Organized Maps (SOM) and the Adaptive Resonance Theory (ART), but these models do not take the...

Descripción completa

Detalles Bibliográficos
Autor: Valdivia Ballesteros, Andre´ Mauricio
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1678
Enlace del recurso:https://hdl.handle.net/20.500.12390/1678
Nivel de acceso:acceso abierto
Materia:Redes neuronales
Multiagentes
Aprendizaje por Refuerzo
Auto- organización
https://purl.org/pe-repo/ocde/ford#2.02.03
id CONC_466a0d6fa19f7117f565274b21792b60
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1678
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia
title Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia
spellingShingle Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia
Valdivia Ballesteros, Andre´ Mauricio
Redes neuronales
Multiagentes
Aprendizaje por Refuerzo
Aprendizaje por Refuerzo
Auto- organización
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia
title_full Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia
title_fullStr Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia
title_full_unstemmed Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia
title_sort Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia
author Valdivia Ballesteros, Andre´ Mauricio
author_facet Valdivia Ballesteros, Andre´ Mauricio
author_role author
dc.contributor.author.fl_str_mv Valdivia Ballesteros, Andre´ Mauricio
dc.subject.none.fl_str_mv Redes neuronales
topic Redes neuronales
Multiagentes
Aprendizaje por Refuerzo
Aprendizaje por Refuerzo
Auto- organización
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.es_PE.fl_str_mv Multiagentes
Aprendizaje por Refuerzo
Aprendizaje por Refuerzo
Auto- organización
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description Neural self-organization is an innate feature of the brains of mammals and it isvery necessary for their operation. The most known artificial neural network models that use this characteristic are the Self-Organized Maps (SOM) and the Adaptive Resonance Theory (ART), but these models do not take the neuron as a processing unit, as it’s biological counterpart does; besides these are models mostlyused for the unsupervised learning paradigm, this means that there aren’t robustself-organized models in the supervised learning paradigm. In other way, influence value reinforcement learning paradigm, used in multi-agent systems, prove thatagents can communicate among them, and can self-organize themselves to assigntasks, without interference.Motivated by the lack of features in the artificial neural networks, and taking intoaccount the influence values reinforcement algorithm, a new neural network modelis proposed, which is focused on solving supervised learning problems by usingreinforcement learning agents as neurons in our model; model that has the differentactivation functions as an important characteristic, because these are unique foreach neuron. This is also an important feature for self-organization.The neural agents will work in a discrete space, besides using a learning algorithm different from the backpropagation, which is used in many networks. Analgorithm inspired in the way the SOM networks propagate their knowledge isproposed, this way the neighboring states to the trained state can acquire its knowledge.In order to prove the functionality of this model, low dimensionality daya bases were used and their performance was compared by a multilayer perceptron,where in most of the databases its performance was improved. The creation of thisnew model is the base for further importance of this investigation is the concept ofneuron.To prove the model functionality, we used databases of low dimensionality, andwe compare its performance with multilayer perceptron, where in most of the databases the performance was improved. The creation of this novel model, is the basefor further research, where the fundamental importance of this work is the novelneural concept
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1678
url https://hdl.handle.net/20.500.12390/1678
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.publisher.none.fl_str_mv Universidad Nacional de San Agustín de Arequipa
publisher.none.fl_str_mv Universidad Nacional de San Agustín de Arequipa
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883073978597376
spelling Publicationrp04575600Valdivia Ballesteros, Andre´ Mauricio2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/1678Neural self-organization is an innate feature of the brains of mammals and it isvery necessary for their operation. The most known artificial neural network models that use this characteristic are the Self-Organized Maps (SOM) and the Adaptive Resonance Theory (ART), but these models do not take the neuron as a processing unit, as it’s biological counterpart does; besides these are models mostlyused for the unsupervised learning paradigm, this means that there aren’t robustself-organized models in the supervised learning paradigm. In other way, influence value reinforcement learning paradigm, used in multi-agent systems, prove thatagents can communicate among them, and can self-organize themselves to assigntasks, without interference.Motivated by the lack of features in the artificial neural networks, and taking intoaccount the influence values reinforcement algorithm, a new neural network modelis proposed, which is focused on solving supervised learning problems by usingreinforcement learning agents as neurons in our model; model that has the differentactivation functions as an important characteristic, because these are unique foreach neuron. This is also an important feature for self-organization.The neural agents will work in a discrete space, besides using a learning algorithm different from the backpropagation, which is used in many networks. Analgorithm inspired in the way the SOM networks propagate their knowledge isproposed, this way the neighboring states to the trained state can acquire its knowledge.In order to prove the functionality of this model, low dimensionality daya bases were used and their performance was compared by a multilayer perceptron,where in most of the databases its performance was improved. The creation of thisnew model is the base for further importance of this investigation is the concept ofneuron.To prove the model functionality, we used databases of low dimensionality, andwe compare its performance with multilayer perceptron, where in most of the databases the performance was improved. The creation of this novel model, is the basefor further research, where the fundamental importance of this work is the novelneural conceptConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecspaUniversidad Nacional de San Agustín de Arequipainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Redes neuronalesMultiagentes-1Aprendizaje por Refuerzo-1Aprendizaje por Refuerzo-1Auto- organización-1https://purl.org/pe-repo/ocde/ford#2.02.03-1Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influenciainfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1678oai:repositorio.concytec.gob.pe:20.500.12390/16782024-05-30 16:04:42.959https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="324d45e9-7092-483a-b7db-55c470ba6c7a"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Nuevo Modelo de Red Neuronal para Aprendizaje Supervisado Basado en Aprendizaje por Refuerzo con Valores de Influencia</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <Authors> <Author> <DisplayName>Valdivia Ballesteros, Andre´ Mauricio</DisplayName> <Person id="rp04575" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Universidad Nacional de San Agustín de Arequipa</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Redes neuronales</Keyword> <Keyword>Multiagentes</Keyword> <Keyword>Aprendizaje por Refuerzo</Keyword> <Keyword>Aprendizaje por Refuerzo</Keyword> <Keyword>Auto- organización</Keyword> <Abstract>Neural self-organization is an innate feature of the brains of mammals and it isvery necessary for their operation. The most known artificial neural network models that use this characteristic are the Self-Organized Maps (SOM) and the Adaptive Resonance Theory (ART), but these models do not take the neuron as a processing unit, as it’s biological counterpart does; besides these are models mostlyused for the unsupervised learning paradigm, this means that there aren’t robustself-organized models in the supervised learning paradigm. In other way, influence value reinforcement learning paradigm, used in multi-agent systems, prove thatagents can communicate among them, and can self-organize themselves to assigntasks, without interference.Motivated by the lack of features in the artificial neural networks, and taking intoaccount the influence values reinforcement algorithm, a new neural network modelis proposed, which is focused on solving supervised learning problems by usingreinforcement learning agents as neurons in our model; model that has the differentactivation functions as an important characteristic, because these are unique foreach neuron. This is also an important feature for self-organization.The neural agents will work in a discrete space, besides using a learning algorithm different from the backpropagation, which is used in many networks. Analgorithm inspired in the way the SOM networks propagate their knowledge isproposed, this way the neighboring states to the trained state can acquire its knowledge.In order to prove the functionality of this model, low dimensionality daya bases were used and their performance was compared by a multilayer perceptron,where in most of the databases its performance was improved. The creation of thisnew model is the base for further importance of this investigation is the concept ofneuron.To prove the model functionality, we used databases of low dimensionality, andwe compare its performance with multilayer perceptron, where in most of the databases the performance was improved. The creation of this novel model, is the basefor further research, where the fundamental importance of this work is the novelneural concept</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.434496
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).