Exportación Completada — 

Lyapunov exponents on metric spaces

Descripción del Articulo

We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer ['Characteristic exponents of dynamical systems in metric spaces', Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduce...

Descripción completa

Detalles Bibliográficos
Autores: Morales, C. A., Thieullen, P., Villavicencio, H.
Formato: artículo
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2881
Enlace del recurso:https://hdl.handle.net/20.500.12390/2881
https://doi.org/10.1017/S0004972717000703
Nivel de acceso:acceso abierto
Materia:pointwise Lipschitz constant
metric space
http://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer ['Characteristic exponents of dynamical systems in metric spaces', Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduces to that of Bessa and Silva on Riemannian manifolds and is not larger than that of Kifer at stable points. We also prove that it is invariant along orbits in the case of (topological) diffeomorphisms and under topological conjugacy. Moreover, the periodic orbits where this exponent is negative are asymptotically stable. Finally, we estimate this exponent for certain hyperbolic homeomorphisms.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).