Lyapunov exponents on metric spaces

Descripción del Articulo

We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer ['Characteristic exponents of dynamical systems in metric spaces', Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduce...

Descripción completa

Detalles Bibliográficos
Autores: Morales, C. A., Thieullen, P., Villavicencio, H.
Formato: artículo
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2881
Enlace del recurso:https://hdl.handle.net/20.500.12390/2881
https://doi.org/10.1017/S0004972717000703
Nivel de acceso:acceso abierto
Materia:pointwise Lipschitz constant
metric space
http://purl.org/pe-repo/ocde/ford#1.01.01
id CONC_42b23b537e54a0f9772d1e3f35509bc1
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2881
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp07638600rp08024600rp07641600Morales, C. A.Thieullen, P.Villavicencio, H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/2881https://doi.org/10.1017/S0004972717000703We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer ['Characteristic exponents of dynamical systems in metric spaces', Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduces to that of Bessa and Silva on Riemannian manifolds and is not larger than that of Kifer at stable points. We also prove that it is invariant along orbits in the case of (topological) diffeomorphisms and under topological conjugacy. Moreover, the periodic orbits where this exponent is negative are asymptotically stable. Finally, we estimate this exponent for certain hyperbolic homeomorphisms.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengCambridge University Press (CUP)BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETYinfo:eu-repo/semantics/openAccesspointwise Lipschitz constantmetric space-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Lyapunov exponents on metric spacesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2881oai:repositorio.concytec.gob.pe:20.500.12390/28812024-05-30 15:25:56.253http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="9516bb52-3349-44ec-b1e3-71be73e2cd3b"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Lyapunov exponents on metric spaces</Title> <PublishedIn> <Publication> <Title>BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1017/S0004972717000703</DOI> <Authors> <Author> <DisplayName>Morales, C. A.</DisplayName> <Person id="rp07638" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Thieullen, P.</DisplayName> <Person id="rp08024" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio, H.</DisplayName> <Person id="rp07641" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Cambridge University Press (CUP)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>pointwise Lipschitz constant</Keyword> <Keyword>metric space</Keyword> <Abstract>We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer [&apos;Characteristic exponents of dynamical systems in metric spaces&apos;, Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduces to that of Bessa and Silva on Riemannian manifolds and is not larger than that of Kifer at stable points. We also prove that it is invariant along orbits in the case of (topological) diffeomorphisms and under topological conjugacy. Moreover, the periodic orbits where this exponent is negative are asymptotically stable. Finally, we estimate this exponent for certain hyperbolic homeomorphisms.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv Lyapunov exponents on metric spaces
title Lyapunov exponents on metric spaces
spellingShingle Lyapunov exponents on metric spaces
Morales, C. A.
pointwise Lipschitz constant
metric space
http://purl.org/pe-repo/ocde/ford#1.01.01
title_short Lyapunov exponents on metric spaces
title_full Lyapunov exponents on metric spaces
title_fullStr Lyapunov exponents on metric spaces
title_full_unstemmed Lyapunov exponents on metric spaces
title_sort Lyapunov exponents on metric spaces
author Morales, C. A.
author_facet Morales, C. A.
Thieullen, P.
Villavicencio, H.
author_role author
author2 Thieullen, P.
Villavicencio, H.
author2_role author
author
dc.contributor.author.fl_str_mv Morales, C. A.
Thieullen, P.
Villavicencio, H.
dc.subject.none.fl_str_mv pointwise Lipschitz constant
topic pointwise Lipschitz constant
metric space
http://purl.org/pe-repo/ocde/ford#1.01.01
dc.subject.es_PE.fl_str_mv metric space
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.01
description We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer ['Characteristic exponents of dynamical systems in metric spaces', Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduces to that of Bessa and Silva on Riemannian manifolds and is not larger than that of Kifer at stable points. We also prove that it is invariant along orbits in the case of (topological) diffeomorphisms and under topological conjugacy. Moreover, the periodic orbits where this exponent is negative are asymptotically stable. Finally, we estimate this exponent for certain hyperbolic homeomorphisms.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2881
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1017/S0004972717000703
url https://hdl.handle.net/20.500.12390/2881
https://doi.org/10.1017/S0004972717000703
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Cambridge University Press (CUP)
publisher.none.fl_str_mv Cambridge University Press (CUP)
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175658460151808
score 13.4481325
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).