Lyapunov exponents on metric spaces
Descripción del Articulo
We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer ['Characteristic exponents of dynamical systems in metric spaces', Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduce...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2017 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2881 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2881 https://doi.org/10.1017/S0004972717000703 |
Nivel de acceso: | acceso abierto |
Materia: | pointwise Lipschitz constant metric space http://purl.org/pe-repo/ocde/ford#1.01.01 |
id |
CONC_42b23b537e54a0f9772d1e3f35509bc1 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2881 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
spelling |
Publicationrp07638600rp08024600rp07641600Morales, C. A.Thieullen, P.Villavicencio, H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/2881https://doi.org/10.1017/S0004972717000703We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer ['Characteristic exponents of dynamical systems in metric spaces', Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduces to that of Bessa and Silva on Riemannian manifolds and is not larger than that of Kifer at stable points. We also prove that it is invariant along orbits in the case of (topological) diffeomorphisms and under topological conjugacy. Moreover, the periodic orbits where this exponent is negative are asymptotically stable. Finally, we estimate this exponent for certain hyperbolic homeomorphisms.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengCambridge University Press (CUP)BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETYinfo:eu-repo/semantics/openAccesspointwise Lipschitz constantmetric space-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Lyapunov exponents on metric spacesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2881oai:repositorio.concytec.gob.pe:20.500.12390/28812024-05-30 15:25:56.253http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="9516bb52-3349-44ec-b1e3-71be73e2cd3b"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Lyapunov exponents on metric spaces</Title> <PublishedIn> <Publication> <Title>BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1017/S0004972717000703</DOI> <Authors> <Author> <DisplayName>Morales, C. A.</DisplayName> <Person id="rp07638" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Thieullen, P.</DisplayName> <Person id="rp08024" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio, H.</DisplayName> <Person id="rp07641" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Cambridge University Press (CUP)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>pointwise Lipschitz constant</Keyword> <Keyword>metric space</Keyword> <Abstract>We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer ['Characteristic exponents of dynamical systems in metric spaces', Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduces to that of Bessa and Silva on Riemannian manifolds and is not larger than that of Kifer at stable points. We also prove that it is invariant along orbits in the case of (topological) diffeomorphisms and under topological conjugacy. Moreover, the periodic orbits where this exponent is negative are asymptotically stable. Finally, we estimate this exponent for certain hyperbolic homeomorphisms.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
dc.title.none.fl_str_mv |
Lyapunov exponents on metric spaces |
title |
Lyapunov exponents on metric spaces |
spellingShingle |
Lyapunov exponents on metric spaces Morales, C. A. pointwise Lipschitz constant metric space http://purl.org/pe-repo/ocde/ford#1.01.01 |
title_short |
Lyapunov exponents on metric spaces |
title_full |
Lyapunov exponents on metric spaces |
title_fullStr |
Lyapunov exponents on metric spaces |
title_full_unstemmed |
Lyapunov exponents on metric spaces |
title_sort |
Lyapunov exponents on metric spaces |
author |
Morales, C. A. |
author_facet |
Morales, C. A. Thieullen, P. Villavicencio, H. |
author_role |
author |
author2 |
Thieullen, P. Villavicencio, H. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Morales, C. A. Thieullen, P. Villavicencio, H. |
dc.subject.none.fl_str_mv |
pointwise Lipschitz constant |
topic |
pointwise Lipschitz constant metric space http://purl.org/pe-repo/ocde/ford#1.01.01 |
dc.subject.es_PE.fl_str_mv |
metric space |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.01 |
description |
We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer ['Characteristic exponents of dynamical systems in metric spaces', Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduces to that of Bessa and Silva on Riemannian manifolds and is not larger than that of Kifer at stable points. We also prove that it is invariant along orbits in the case of (topological) diffeomorphisms and under topological conjugacy. Moreover, the periodic orbits where this exponent is negative are asymptotically stable. Finally, we estimate this exponent for certain hyperbolic homeomorphisms. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2881 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1017/S0004972717000703 |
url |
https://hdl.handle.net/20.500.12390/2881 https://doi.org/10.1017/S0004972717000703 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Cambridge University Press (CUP) |
publisher.none.fl_str_mv |
Cambridge University Press (CUP) |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175658460151808 |
score |
13.4481325 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).