Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse

Descripción del Articulo

Enzymatic catalysis is a sustainable alternative for cost-prohibitive catalysts based on noble metals and rare earths. Enzymes can catalyze selective reactions under mild conditions. Enzyme recovery after a reaction for its reuse is still a challenge for industrial application. Herein, a biocompatib...

Descripción completa

Detalles Bibliográficos
Autores: Saire-Saire S., Garcia-Segura S., Luyo C., Andrade L.H., Alarcon H.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2563
Enlace del recurso:https://hdl.handle.net/20.500.12390/2563
https://doi.org/10.1016/j.ijbiomac.2020.01.137
Nivel de acceso:acceso abierto
Materia:Nano-biocatalysis
Enantioselective synthesis
Enzymatic synthesis
Hydroxypatite
Magnetic nanoparticles
http://purl.org/pe-repo/ocde/ford#2.10.02
id CONC_206161d76a0bb39a35d32ea002fb6ee5
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2563
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse
title Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse
spellingShingle Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse
Saire-Saire S.
Nano-biocatalysis
Enantioselective synthesis
Enzymatic synthesis
Hydroxypatite
Magnetic nanoparticles
http://purl.org/pe-repo/ocde/ford#2.10.02
title_short Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse
title_full Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse
title_fullStr Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse
title_full_unstemmed Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse
title_sort Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse
author Saire-Saire S.
author_facet Saire-Saire S.
Garcia-Segura S.
Luyo C.
Andrade L.H.
Alarcon H.
author_role author
author2 Garcia-Segura S.
Luyo C.
Andrade L.H.
Alarcon H.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Saire-Saire S.
Garcia-Segura S.
Luyo C.
Andrade L.H.
Alarcon H.
dc.subject.none.fl_str_mv Nano-biocatalysis
topic Nano-biocatalysis
Enantioselective synthesis
Enzymatic synthesis
Hydroxypatite
Magnetic nanoparticles
http://purl.org/pe-repo/ocde/ford#2.10.02
dc.subject.es_PE.fl_str_mv Enantioselective synthesis
Enzymatic synthesis
Hydroxypatite
Magnetic nanoparticles
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.10.02
description Enzymatic catalysis is a sustainable alternative for cost-prohibitive catalysts based on noble metals and rare earths. Enzymes can catalyze selective reactions under mild conditions. Enzyme recovery after a reaction for its reuse is still a challenge for industrial application. Herein, a biocompatible magnetic nanocomposite is presented as alternative for enzyme stabilization and easy recovery. The magnetic core of CoFe2O4 provides capabilities for magnetic recovery. Two different functionalization methods based on adsorption of enzyme onto biocompatible hydroxyapatite (HAP) and through covalent bonding using a molecular spacer based on 3-Aminopropyl)triethoxysilane (APTES) have been evaluated. Both enzymatic bio-nanocomposites presented high selectivity for the transesterification reaction of racemic mixtures of (R,S)-1-phenylethanol, with complete conversion of (R)-1-phenylethanol enantiomer. Studies with different solvent and temperature had demonstrated high range of operation conditions due to enzyme stabilization provided by surface attachment. Meanwhile, magnetic properties allowed easy recovery through application of an external magnetic field for enzyme reuse. Results showed high stability of lipase covalently bond to CoFe2O4/HAP over several reaction cycles.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2563
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.ijbiomac.2020.01.137
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85078059118
url https://hdl.handle.net/20.500.12390/2563
https://doi.org/10.1016/j.ijbiomac.2020.01.137
identifier_str_mv 2-s2.0-85078059118
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv International Journal of Biological Macromolecules
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175662308425728
spelling Publicationrp06592600rp05660600rp01891600rp06591600rp05659600Saire-Saire S.Garcia-Segura S.Luyo C.Andrade L.H.Alarcon H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2563https://doi.org/10.1016/j.ijbiomac.2020.01.1372-s2.0-85078059118Enzymatic catalysis is a sustainable alternative for cost-prohibitive catalysts based on noble metals and rare earths. Enzymes can catalyze selective reactions under mild conditions. Enzyme recovery after a reaction for its reuse is still a challenge for industrial application. Herein, a biocompatible magnetic nanocomposite is presented as alternative for enzyme stabilization and easy recovery. The magnetic core of CoFe2O4 provides capabilities for magnetic recovery. Two different functionalization methods based on adsorption of enzyme onto biocompatible hydroxyapatite (HAP) and through covalent bonding using a molecular spacer based on 3-Aminopropyl)triethoxysilane (APTES) have been evaluated. Both enzymatic bio-nanocomposites presented high selectivity for the transesterification reaction of racemic mixtures of (R,S)-1-phenylethanol, with complete conversion of (R)-1-phenylethanol enantiomer. Studies with different solvent and temperature had demonstrated high range of operation conditions due to enzyme stabilization provided by surface attachment. Meanwhile, magnetic properties allowed easy recovery through application of an external magnetic field for enzyme reuse. Results showed high stability of lipase covalently bond to CoFe2O4/HAP over several reaction cycles.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier B.V.International Journal of Biological Macromoleculesinfo:eu-repo/semantics/openAccessNano-biocatalysisEnantioselective synthesis-1Enzymatic synthesis-1Hydroxypatite-1Magnetic nanoparticles-1http://purl.org/pe-repo/ocde/ford#2.10.02-1Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuseinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2563oai:repositorio.concytec.gob.pe:20.500.12390/25632024-05-30 15:42:23.195http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="99c9caf0-1f7f-47f5-898c-0bce030908f6"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse</Title> <PublishedIn> <Publication> <Title>International Journal of Biological Macromolecules</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1016/j.ijbiomac.2020.01.137</DOI> <SCP-Number>2-s2.0-85078059118</SCP-Number> <Authors> <Author> <DisplayName>Saire-Saire S.</DisplayName> <Person id="rp06592" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Garcia-Segura S.</DisplayName> <Person id="rp05660" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Luyo C.</DisplayName> <Person id="rp01891" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Andrade L.H.</DisplayName> <Person id="rp06591" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Alarcon H.</DisplayName> <Person id="rp05659" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier B.V.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Nano-biocatalysis</Keyword> <Keyword>Enantioselective synthesis</Keyword> <Keyword>Enzymatic synthesis</Keyword> <Keyword>Hydroxypatite</Keyword> <Keyword>Magnetic nanoparticles</Keyword> <Abstract>Enzymatic catalysis is a sustainable alternative for cost-prohibitive catalysts based on noble metals and rare earths. Enzymes can catalyze selective reactions under mild conditions. Enzyme recovery after a reaction for its reuse is still a challenge for industrial application. Herein, a biocompatible magnetic nanocomposite is presented as alternative for enzyme stabilization and easy recovery. The magnetic core of CoFe2O4 provides capabilities for magnetic recovery. Two different functionalization methods based on adsorption of enzyme onto biocompatible hydroxyapatite (HAP) and through covalent bonding using a molecular spacer based on 3-Aminopropyl)triethoxysilane (APTES) have been evaluated. Both enzymatic bio-nanocomposites presented high selectivity for the transesterification reaction of racemic mixtures of (R,S)-1-phenylethanol, with complete conversion of (R)-1-phenylethanol enantiomer. Studies with different solvent and temperature had demonstrated high range of operation conditions due to enzyme stabilization provided by surface attachment. Meanwhile, magnetic properties allowed easy recovery through application of an external magnetic field for enzyme reuse. Results showed high stability of lipase covalently bond to CoFe2O4/HAP over several reaction cycles.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).