Exportación Completada — 

Efectos de la inestabilidad de Rayleigh-Taylor sobre frentes de reacción descritos mediante la ecuación de Kuramoto-Sivashinky

Descripción del Articulo

En el presente trabajo se estudia la propagación de frentes químicos sujetos a la inestabilidad de Rayleigh- Taylor. El flujo convectivo es modelado utilizando la ecuación de Navier-Stokes. Los resultados serán comparados con los obtenidos con la ley de Darcy. La inestabilidad de Rayleigh-Taylor se...

Descripción completa

Detalles Bibliográficos
Autor: Macalupú Huertas, Simón Segundo
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1531
Enlace del recurso:https://hdl.handle.net/20.500.12390/1531
Nivel de acceso:acceso abierto
Materia:Sistemas dinámicos
Dinámica de fluidos
Mecánica de fluidos
Frentes químicos
Métodos numéricos
https://purl.org/pe-repo/ocde/ford#1.03.00
Descripción
Sumario:En el presente trabajo se estudia la propagación de frentes químicos sujetos a la inestabilidad de Rayleigh- Taylor. El flujo convectivo es modelado utilizando la ecuación de Navier-Stokes. Los resultados serán comparados con los obtenidos con la ley de Darcy. La inestabilidad de Rayleigh-Taylor se presenta cuando dos uidos de distintas densidades separados por una delgada interfaz plana se vuelve inestable debido al gradiente de densidades que ocurre cuando el fluido más denso esta encima del menos denso y bajo la acción de la gravedad. Se consideran fluidos con las siguientes condiciones: inmiscibles, incompresibles e irrotacionales. Para describir el frente de propagación hemos utilizado la ecuación de Kuramoto-Sivashinsky(K-S) acoplada con la ecuación de Navier-Stokes para la evolución del ujo de convección. La solución de la ecuación (K-S) ofrece una rica variedad de comportamiento espaciotemporal: frentes planos, frentes simétricos o asimétricos, frentes oscilantes y caóticos. El análisis de estabilidad lineal muestra regiones de bi-estabilidad para diferentes números de Rayleigh.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).