The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements
Descripción del Articulo
The role of evolution operator is to provide the time displacement of wave function through the Hamiltonian of the system. The usage of coordinates representation gives the well-known propagator that is the Green’s function. In this paper it is emphasized that once the propagator is projected onto a...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1807 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1807 https://doi.org/10.1109/AIKE52691.2021.00029 |
Nivel de acceso: | acceso restringido |
Materia: | Knowledge engineering Conferences Quantum mechanics Morphology Machine learning Wave functions https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_f0338be8b04123b6da70cd0ee4ac29f9 |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1807 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Nieto-Chaupis, Huber2022-04-29T14:38:01Z2022-04-29T14:38:01Z2022-03-03Nieto-Chaupis, H. (2021). The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements. In 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) (pp. 135-136). IEEE.978-1-6654-3736-3https://hdl.handle.net/20.500.13067/18072021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)https://doi.org/10.1109/AIKE52691.2021.00029The role of evolution operator is to provide the time displacement of wave function through the Hamiltonian of the system. The usage of coordinates representation gives the well-known propagator that is the Green’s function. In this paper it is emphasized that once the propagator is projected onto a scenario of machine learning it would acquire the role of performance in according to the criteria of Tom Mitchell. In this manner from the resulting wave function the probability is simulated presenting noteworthy morphologies in the which the system displays high values of probability for the measurement of distances.application/pdfengInstitute of Electrical and Electronics EngineersPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA135136reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAKnowledge engineeringConferencesQuantum mechanicsMorphologyMachine learningWave functionshttps://purl.org/pe-repo/ocde/ford#2.02.04The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacementsinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85127625788&doi=10.1109%2fAIKE52691.2021.00029&partnerID=40&md5TEXTThe Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements.pdf.txtThe Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements.pdf.txtExtracted texttext/plain602http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1807/4/The%20Quantum%20Mechanics%20Propagator%20as%20the%20Machine%20Learning%20Performance%20in%20Space-Time%20Displacements.pdf.txte3dd34123e4359fbaec0b7f2eb988493MD54THUMBNAILThe Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements.pdf.jpgThe Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements.pdf.jpgGenerated Thumbnailimage/jpeg5869http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1807/5/The%20Quantum%20Mechanics%20Propagator%20as%20the%20Machine%20Learning%20Performance%20in%20Space-Time%20Displacements.pdf.jpgd9832e5b03223bd7b9ea188040a0c57cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1807/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALThe Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements.pdfThe Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements.pdfVer fuenteapplication/pdf98746http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1807/3/The%20Quantum%20Mechanics%20Propagator%20as%20the%20Machine%20Learning%20Performance%20in%20Space-Time%20Displacements.pdf679c30a4c34ef5a33fd679aea9b799cbMD5320.500.13067/1807oai:repositorio.autonoma.edu.pe:20.500.13067/18072022-04-30 03:00:21.033Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
dc.title.es_PE.fl_str_mv |
The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements |
title |
The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements |
spellingShingle |
The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements Nieto-Chaupis, Huber Knowledge engineering Conferences Quantum mechanics Morphology Machine learning Wave functions https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements |
title_full |
The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements |
title_fullStr |
The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements |
title_full_unstemmed |
The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements |
title_sort |
The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements |
author |
Nieto-Chaupis, Huber |
author_facet |
Nieto-Chaupis, Huber |
author_role |
author |
dc.contributor.author.fl_str_mv |
Nieto-Chaupis, Huber |
dc.subject.es_PE.fl_str_mv |
Knowledge engineering Conferences Quantum mechanics Morphology Machine learning Wave functions |
topic |
Knowledge engineering Conferences Quantum mechanics Morphology Machine learning Wave functions https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
The role of evolution operator is to provide the time displacement of wave function through the Hamiltonian of the system. The usage of coordinates representation gives the well-known propagator that is the Green’s function. In this paper it is emphasized that once the propagator is projected onto a scenario of machine learning it would acquire the role of performance in according to the criteria of Tom Mitchell. In this manner from the resulting wave function the probability is simulated presenting noteworthy morphologies in the which the system displays high values of probability for the measurement of distances. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-04-29T14:38:01Z |
dc.date.available.none.fl_str_mv |
2022-04-29T14:38:01Z |
dc.date.issued.fl_str_mv |
2022-03-03 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Nieto-Chaupis, H. (2021). The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements. In 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) (pp. 135-136). IEEE. |
dc.identifier.isbn.none.fl_str_mv |
978-1-6654-3736-3 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1807 |
dc.identifier.journal.es_PE.fl_str_mv |
2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/AIKE52691.2021.00029 |
identifier_str_mv |
Nieto-Chaupis, H. (2021). The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements. In 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) (pp. 135-136). IEEE. 978-1-6654-3736-3 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) |
url |
https://hdl.handle.net/20.500.13067/1807 https://doi.org/10.1109/AIKE52691.2021.00029 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127625788&doi=10.1109%2fAIKE52691.2021.00029&partnerID=40&md5 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.beginpage.es_PE.fl_str_mv |
135 |
dc.source.endpage.es_PE.fl_str_mv |
136 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1807/4/The%20Quantum%20Mechanics%20Propagator%20as%20the%20Machine%20Learning%20Performance%20in%20Space-Time%20Displacements.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1807/5/The%20Quantum%20Mechanics%20Propagator%20as%20the%20Machine%20Learning%20Performance%20in%20Space-Time%20Displacements.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1807/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1807/3/The%20Quantum%20Mechanics%20Propagator%20as%20the%20Machine%20Learning%20Performance%20in%20Space-Time%20Displacements.pdf |
bitstream.checksum.fl_str_mv |
e3dd34123e4359fbaec0b7f2eb988493 d9832e5b03223bd7b9ea188040a0c57c 9243398ff393db1861c890baeaeee5f9 679c30a4c34ef5a33fd679aea9b799cb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1774399973472862208 |
score |
13.949927 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).