The Quantum Mechanics Propagator as the Machine Learning Performance in Space-Time Displacements

Descripción del Articulo

The role of evolution operator is to provide the time displacement of wave function through the Hamiltonian of the system. The usage of coordinates representation gives the well-known propagator that is the Green’s function. In this paper it is emphasized that once the propagator is projected onto a...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1807
Enlace del recurso:https://hdl.handle.net/20.500.13067/1807
https://doi.org/10.1109/AIKE52691.2021.00029
Nivel de acceso:acceso restringido
Materia:Knowledge engineering
Conferences
Quantum mechanics
Morphology
Machine learning
Wave functions
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:The role of evolution operator is to provide the time displacement of wave function through the Hamiltonian of the system. The usage of coordinates representation gives the well-known propagator that is the Green’s function. In this paper it is emphasized that once the propagator is projected onto a scenario of machine learning it would acquire the role of performance in according to the criteria of Tom Mitchell. In this manner from the resulting wave function the probability is simulated presenting noteworthy morphologies in the which the system displays high values of probability for the measurement of distances.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).