A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines
Descripción del Articulo
In this work, a torque controller for a variable rotational speed wind turbine has been modelled using Reinforcement Learning and considering the Optimal Torque - Maximum Power Point Tracking problem as one of optimization. The reward optimization function is designed as a non-linear function depend...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Autónoma del Perú |
| Repositorio: | AUTONOMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/2918 |
| Enlace del recurso: | https://hdl.handle.net/20.500.13067/2918 https://doi.org/10.1088/1742-6596/2538/1/012005 |
| Nivel de acceso: | acceso abierto |
| Materia: | Reinforcement Learning https://purl.org/pe-repo/ocde/ford#2.07.00 |
| id |
AUTO_c330ac2a6ed3d41be0700dde7778d0ac |
|---|---|
| oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/2918 |
| network_acronym_str |
AUTO |
| network_name_str |
AUTONOMA-Institucional |
| repository_id_str |
4774 |
| spelling |
Choquehuanca, E.Ortega, A.2023-12-27T22:03:18Z2023-12-27T22:03:18Z2023https://hdl.handle.net/20.500.13067/2918Journal of Physics: Conference Serieshttps://doi.org/10.1088/1742-6596/2538/1/012005In this work, a torque controller for a variable rotational speed wind turbine has been modelled using Reinforcement Learning and considering the Optimal Torque - Maximum Power Point Tracking problem as one of optimization. The reward optimization function is designed as a non-linear function depending mainly on the rotor power variation. Based on this, an optimal action (electromagnetic torque variation) regulates the turbine rotational speed. A simulated 1.5 MW three bladed wind turbine operation is managed by the torque controller. It keeps the turbine working at optimal operational conditions after a successful training process, which is carried out using the Proximal Policy Optimization algorithm. For the controller training, the turbine confronts constant and then randomly staggered wind speed behaviour. Time series of rotor angular speed, torque and power are presented. Our results show that the modelled controller is able to reach and maintain the wind turbine operation at its optimal power generation conditions. This methodology avoids using some empirical parameter characteristic of the Optimal Torque - Maximum Power Point Tracking algorithm widely used in wind turbine control systems.application/pdfengIOPscienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Reinforcement Learninghttps://purl.org/pe-repo/ocde/ford#2.07.00A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbinesinfo:eu-repo/semantics/article16reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL121_2023.pdf121_2023.pdfArtículoapplication/pdf1186662http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/1/121_2023.pdf992927440e04fdb8689d2b4ae9aec3adMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT121_2023.pdf.txt121_2023.pdf.txtExtracted texttext/plain17940http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/3/121_2023.pdf.txtc85eb100d9dcca69d6e2af62e63282eeMD53THUMBNAIL121_2023.pdf.jpg121_2023.pdf.jpgGenerated Thumbnailimage/jpeg4749http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/4/121_2023.pdf.jpga7eb97fc1f28a71c5cf6b50d42c79ddeMD5420.500.13067/2918oai:repositorio.autonoma.edu.pe:20.500.13067/29182023-12-28 03:00:33.604Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
| dc.title.es_PE.fl_str_mv |
A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines |
| title |
A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines |
| spellingShingle |
A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines Choquehuanca, E. Reinforcement Learning https://purl.org/pe-repo/ocde/ford#2.07.00 |
| title_short |
A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines |
| title_full |
A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines |
| title_fullStr |
A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines |
| title_full_unstemmed |
A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines |
| title_sort |
A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines |
| author |
Choquehuanca, E. |
| author_facet |
Choquehuanca, E. Ortega, A. |
| author_role |
author |
| author2 |
Ortega, A. |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Choquehuanca, E. Ortega, A. |
| dc.subject.es_PE.fl_str_mv |
Reinforcement Learning |
| topic |
Reinforcement Learning https://purl.org/pe-repo/ocde/ford#2.07.00 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.07.00 |
| description |
In this work, a torque controller for a variable rotational speed wind turbine has been modelled using Reinforcement Learning and considering the Optimal Torque - Maximum Power Point Tracking problem as one of optimization. The reward optimization function is designed as a non-linear function depending mainly on the rotor power variation. Based on this, an optimal action (electromagnetic torque variation) regulates the turbine rotational speed. A simulated 1.5 MW three bladed wind turbine operation is managed by the torque controller. It keeps the turbine working at optimal operational conditions after a successful training process, which is carried out using the Proximal Policy Optimization algorithm. For the controller training, the turbine confronts constant and then randomly staggered wind speed behaviour. Time series of rotor angular speed, torque and power are presented. Our results show that the modelled controller is able to reach and maintain the wind turbine operation at its optimal power generation conditions. This methodology avoids using some empirical parameter characteristic of the Optimal Torque - Maximum Power Point Tracking algorithm widely used in wind turbine control systems. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-12-27T22:03:18Z |
| dc.date.available.none.fl_str_mv |
2023-12-27T22:03:18Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/2918 |
| dc.identifier.journal.es_PE.fl_str_mv |
Journal of Physics: Conference Series |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1088/1742-6596/2538/1/012005 |
| url |
https://hdl.handle.net/20.500.13067/2918 https://doi.org/10.1088/1742-6596/2538/1/012005 |
| identifier_str_mv |
Journal of Physics: Conference Series |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
IOPscience |
| dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
| instname_str |
Universidad Autónoma del Perú |
| instacron_str |
AUTONOMA |
| institution |
AUTONOMA |
| reponame_str |
AUTONOMA-Institucional |
| collection |
AUTONOMA-Institucional |
| dc.source.beginpage.es_PE.fl_str_mv |
1 |
| dc.source.endpage.es_PE.fl_str_mv |
6 |
| bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/1/121_2023.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/3/121_2023.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/4/121_2023.pdf.jpg |
| bitstream.checksum.fl_str_mv |
992927440e04fdb8689d2b4ae9aec3ad 9243398ff393db1861c890baeaeee5f9 c85eb100d9dcca69d6e2af62e63282ee a7eb97fc1f28a71c5cf6b50d42c79dde |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
| repository.mail.fl_str_mv |
repositorio@autonoma.pe |
| _version_ |
1835915420290252800 |
| score |
13.939346 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).