A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines

Descripción del Articulo

In this work, a torque controller for a variable rotational speed wind turbine has been modelled using Reinforcement Learning and considering the Optimal Torque - Maximum Power Point Tracking problem as one of optimization. The reward optimization function is designed as a non-linear function depend...

Descripción completa

Detalles Bibliográficos
Autores: Choquehuanca, E., Ortega, A.
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2918
Enlace del recurso:https://hdl.handle.net/20.500.13067/2918
https://doi.org/10.1088/1742-6596/2538/1/012005
Nivel de acceso:acceso abierto
Materia:Reinforcement Learning
https://purl.org/pe-repo/ocde/ford#2.07.00
id AUTO_c330ac2a6ed3d41be0700dde7778d0ac
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2918
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Choquehuanca, E.Ortega, A.2023-12-27T22:03:18Z2023-12-27T22:03:18Z2023https://hdl.handle.net/20.500.13067/2918Journal of Physics: Conference Serieshttps://doi.org/10.1088/1742-6596/2538/1/012005In this work, a torque controller for a variable rotational speed wind turbine has been modelled using Reinforcement Learning and considering the Optimal Torque - Maximum Power Point Tracking problem as one of optimization. The reward optimization function is designed as a non-linear function depending mainly on the rotor power variation. Based on this, an optimal action (electromagnetic torque variation) regulates the turbine rotational speed. A simulated 1.5 MW three bladed wind turbine operation is managed by the torque controller. It keeps the turbine working at optimal operational conditions after a successful training process, which is carried out using the Proximal Policy Optimization algorithm. For the controller training, the turbine confronts constant and then randomly staggered wind speed behaviour. Time series of rotor angular speed, torque and power are presented. Our results show that the modelled controller is able to reach and maintain the wind turbine operation at its optimal power generation conditions. This methodology avoids using some empirical parameter characteristic of the Optimal Torque - Maximum Power Point Tracking algorithm widely used in wind turbine control systems.application/pdfengIOPscienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Reinforcement Learninghttps://purl.org/pe-repo/ocde/ford#2.07.00A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbinesinfo:eu-repo/semantics/article16reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL121_2023.pdf121_2023.pdfArtículoapplication/pdf1186662http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/1/121_2023.pdf992927440e04fdb8689d2b4ae9aec3adMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT121_2023.pdf.txt121_2023.pdf.txtExtracted texttext/plain17940http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/3/121_2023.pdf.txtc85eb100d9dcca69d6e2af62e63282eeMD53THUMBNAIL121_2023.pdf.jpg121_2023.pdf.jpgGenerated Thumbnailimage/jpeg4749http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/4/121_2023.pdf.jpga7eb97fc1f28a71c5cf6b50d42c79ddeMD5420.500.13067/2918oai:repositorio.autonoma.edu.pe:20.500.13067/29182023-12-28 03:00:33.604Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines
title A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines
spellingShingle A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines
Choquehuanca, E.
Reinforcement Learning
https://purl.org/pe-repo/ocde/ford#2.07.00
title_short A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines
title_full A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines
title_fullStr A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines
title_full_unstemmed A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines
title_sort A Reinforcement Learning approach to the Optimal Torque MPPT problem in wind turbines
author Choquehuanca, E.
author_facet Choquehuanca, E.
Ortega, A.
author_role author
author2 Ortega, A.
author2_role author
dc.contributor.author.fl_str_mv Choquehuanca, E.
Ortega, A.
dc.subject.es_PE.fl_str_mv Reinforcement Learning
topic Reinforcement Learning
https://purl.org/pe-repo/ocde/ford#2.07.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.07.00
description In this work, a torque controller for a variable rotational speed wind turbine has been modelled using Reinforcement Learning and considering the Optimal Torque - Maximum Power Point Tracking problem as one of optimization. The reward optimization function is designed as a non-linear function depending mainly on the rotor power variation. Based on this, an optimal action (electromagnetic torque variation) regulates the turbine rotational speed. A simulated 1.5 MW three bladed wind turbine operation is managed by the torque controller. It keeps the turbine working at optimal operational conditions after a successful training process, which is carried out using the Proximal Policy Optimization algorithm. For the controller training, the turbine confronts constant and then randomly staggered wind speed behaviour. Time series of rotor angular speed, torque and power are presented. Our results show that the modelled controller is able to reach and maintain the wind turbine operation at its optimal power generation conditions. This methodology avoids using some empirical parameter characteristic of the Optimal Torque - Maximum Power Point Tracking algorithm widely used in wind turbine control systems.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-27T22:03:18Z
dc.date.available.none.fl_str_mv 2023-12-27T22:03:18Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2918
dc.identifier.journal.es_PE.fl_str_mv Journal of Physics: Conference Series
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1088/1742-6596/2538/1/012005
url https://hdl.handle.net/20.500.13067/2918
https://doi.org/10.1088/1742-6596/2538/1/012005
identifier_str_mv Journal of Physics: Conference Series
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv IOPscience
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 6
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/1/121_2023.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/3/121_2023.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2918/4/121_2023.pdf.jpg
bitstream.checksum.fl_str_mv 992927440e04fdb8689d2b4ae9aec3ad
9243398ff393db1861c890baeaeee5f9
c85eb100d9dcca69d6e2af62e63282ee
a7eb97fc1f28a71c5cf6b50d42c79dde
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915420290252800
score 13.939346
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).