Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion

Descripción del Articulo

In this article, an analysis of the Higgs boson production via vector boson fusion in the SM H→WW→ 2l2ν (l = e, μ) is performed from an optimization technique in the event selection, called DNN analysis. This analysis compares the standard selection process that CERN performs to study the production...

Descripción completa

Detalles Bibliográficos
Autores: Sánchez, Luis, Díaz, Félix, Rojas, Jhonny
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2885
Enlace del recurso:https://hdl.handle.net/20.500.13067/2885
https://doi.org/10.18687/LACCEI2023.1.1.1072
Nivel de acceso:acceso abierto
Materia:Vector Boson Fusion
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:In this article, an analysis of the Higgs boson production via vector boson fusion in the SM H→WW→ 2l2ν (l = e, μ) is performed from an optimization technique in the event selection, called DNN analysis. This analysis compares the standard selection process that CERN performs to study the production of a particle from a cut-based analysis, where the study of statistical significance shows that DNN analysis can better separate signal and background events. To perform the DNN analysis, we optimized the neural network configuration to discriminate signal and background events effectively. Moreover, studies of activation functions such as RELU and Sigmoid, stochastic optimization methods such as ADAM, and regularization methods such as Dropout. All this leads to constructing an optimal neural network topology capable of learning events and signal and background discrimination. Finally, we found an important improvement of approximately 47 % and 27 % for and , respectively.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).