Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion

Descripción del Articulo

In this article, an analysis of the Higgs boson production via vector boson fusion in the SM H→WW→ 2l2ν (l = e, μ) is performed from an optimization technique in the event selection, called DNN analysis. This analysis compares the standard selection process that CERN performs to study the production...

Descripción completa

Detalles Bibliográficos
Autores: Sánchez, Luis, Díaz, Félix, Rojas, Jhonny
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2885
Enlace del recurso:https://hdl.handle.net/20.500.13067/2885
https://doi.org/10.18687/LACCEI2023.1.1.1072
Nivel de acceso:acceso abierto
Materia:Vector Boson Fusion
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_c239a8700b013ff5eacb8830bfa31899
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2885
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Sánchez, LuisDíaz, FélixRojas, Jhonny2023-12-20T20:41:58Z2023-12-20T20:41:58Z2023https://hdl.handle.net/20.500.13067/2885LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2023.1.1.1072In this article, an analysis of the Higgs boson production via vector boson fusion in the SM H→WW→ 2l2ν (l = e, μ) is performed from an optimization technique in the event selection, called DNN analysis. This analysis compares the standard selection process that CERN performs to study the production of a particle from a cut-based analysis, where the study of statistical significance shows that DNN analysis can better separate signal and background events. To perform the DNN analysis, we optimized the neural network configuration to discriminate signal and background events effectively. Moreover, studies of activation functions such as RELU and Sigmoid, stochastic optimization methods such as ADAM, and regularization methods such as Dropout. All this leads to constructing an optimal neural network topology capable of learning events and signal and background discrimination. Finally, we found an important improvement of approximately 47 % and 27 % for and , respectively.application/pdfengLACCEI international Multi-conference for Engineering, Education and Technologyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Vector Boson Fusionhttps://purl.org/pe-repo/ocde/ford#2.02.04Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusioninfo:eu-repo/semantics/article19reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL93_2023.pdf93_2023.pdfArtículoapplication/pdf945531http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/1/93_2023.pdfba9ab5ade8b985c11cbdacf58fa59796MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT93_2023.pdf.txt93_2023.pdf.txtExtracted texttext/plain40352http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/3/93_2023.pdf.txt3ac7be17a6430394a63777827e90817dMD53THUMBNAIL93_2023.pdf.jpg93_2023.pdf.jpgGenerated Thumbnailimage/jpeg8112http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/4/93_2023.pdf.jpg523787f262cee29e1cd58f6e2016833cMD5420.500.13067/2885oai:repositorio.autonoma.edu.pe:20.500.13067/28852025-10-16 08:48:02.25Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
title Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
spellingShingle Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
Sánchez, Luis
Vector Boson Fusion
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
title_full Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
title_fullStr Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
title_full_unstemmed Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
title_sort Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
author Sánchez, Luis
author_facet Sánchez, Luis
Díaz, Félix
Rojas, Jhonny
author_role author
author2 Díaz, Félix
Rojas, Jhonny
author2_role author
author
dc.contributor.author.fl_str_mv Sánchez, Luis
Díaz, Félix
Rojas, Jhonny
dc.subject.es_PE.fl_str_mv Vector Boson Fusion
topic Vector Boson Fusion
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description In this article, an analysis of the Higgs boson production via vector boson fusion in the SM H→WW→ 2l2ν (l = e, μ) is performed from an optimization technique in the event selection, called DNN analysis. This analysis compares the standard selection process that CERN performs to study the production of a particle from a cut-based analysis, where the study of statistical significance shows that DNN analysis can better separate signal and background events. To perform the DNN analysis, we optimized the neural network configuration to discriminate signal and background events effectively. Moreover, studies of activation functions such as RELU and Sigmoid, stochastic optimization methods such as ADAM, and regularization methods such as Dropout. All this leads to constructing an optimal neural network topology capable of learning events and signal and background discrimination. Finally, we found an important improvement of approximately 47 % and 27 % for and , respectively.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-20T20:41:58Z
dc.date.available.none.fl_str_mv 2023-12-20T20:41:58Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2885
dc.identifier.journal.es_PE.fl_str_mv LACCEI international Multi-conference for Engineering, Education and Technology
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18687/LACCEI2023.1.1.1072
url https://hdl.handle.net/20.500.13067/2885
https://doi.org/10.18687/LACCEI2023.1.1.1072
identifier_str_mv LACCEI international Multi-conference for Engineering, Education and Technology
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv LACCEI international Multi-conference for Engineering, Education and Technology
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 9
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/1/93_2023.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/3/93_2023.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/4/93_2023.pdf.jpg
bitstream.checksum.fl_str_mv ba9ab5ade8b985c11cbdacf58fa59796
9243398ff393db1861c890baeaeee5f9
3ac7be17a6430394a63777827e90817d
523787f262cee29e1cd58f6e2016833c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1846696197455085568
score 13.413335
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).