Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
Descripción del Articulo
In this article, an analysis of the Higgs boson production via vector boson fusion in the SM H→WW→ 2l2ν (l = e, μ) is performed from an optimization technique in the event selection, called DNN analysis. This analysis compares the standard selection process that CERN performs to study the production...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Autónoma del Perú |
| Repositorio: | AUTONOMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/2885 |
| Enlace del recurso: | https://hdl.handle.net/20.500.13067/2885 https://doi.org/10.18687/LACCEI2023.1.1.1072 |
| Nivel de acceso: | acceso abierto |
| Materia: | Vector Boson Fusion https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
AUTO_c239a8700b013ff5eacb8830bfa31899 |
|---|---|
| oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/2885 |
| network_acronym_str |
AUTO |
| network_name_str |
AUTONOMA-Institucional |
| repository_id_str |
4774 |
| spelling |
Sánchez, LuisDíaz, FélixRojas, Jhonny2023-12-20T20:41:58Z2023-12-20T20:41:58Z2023https://hdl.handle.net/20.500.13067/2885LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2023.1.1.1072In this article, an analysis of the Higgs boson production via vector boson fusion in the SM H→WW→ 2l2ν (l = e, μ) is performed from an optimization technique in the event selection, called DNN analysis. This analysis compares the standard selection process that CERN performs to study the production of a particle from a cut-based analysis, where the study of statistical significance shows that DNN analysis can better separate signal and background events. To perform the DNN analysis, we optimized the neural network configuration to discriminate signal and background events effectively. Moreover, studies of activation functions such as RELU and Sigmoid, stochastic optimization methods such as ADAM, and regularization methods such as Dropout. All this leads to constructing an optimal neural network topology capable of learning events and signal and background discrimination. Finally, we found an important improvement of approximately 47 % and 27 % for and , respectively.application/pdfengLACCEI international Multi-conference for Engineering, Education and Technologyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Vector Boson Fusionhttps://purl.org/pe-repo/ocde/ford#2.02.04Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusioninfo:eu-repo/semantics/article19reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL93_2023.pdf93_2023.pdfArtículoapplication/pdf945531http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/1/93_2023.pdfba9ab5ade8b985c11cbdacf58fa59796MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT93_2023.pdf.txt93_2023.pdf.txtExtracted texttext/plain40352http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/3/93_2023.pdf.txt3ac7be17a6430394a63777827e90817dMD53THUMBNAIL93_2023.pdf.jpg93_2023.pdf.jpgGenerated Thumbnailimage/jpeg8112http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/4/93_2023.pdf.jpg523787f262cee29e1cd58f6e2016833cMD5420.500.13067/2885oai:repositorio.autonoma.edu.pe:20.500.13067/28852025-10-16 08:48:02.25Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
| dc.title.es_PE.fl_str_mv |
Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion |
| title |
Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion |
| spellingShingle |
Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion Sánchez, Luis Vector Boson Fusion https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion |
| title_full |
Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion |
| title_fullStr |
Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion |
| title_full_unstemmed |
Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion |
| title_sort |
Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion |
| author |
Sánchez, Luis |
| author_facet |
Sánchez, Luis Díaz, Félix Rojas, Jhonny |
| author_role |
author |
| author2 |
Díaz, Félix Rojas, Jhonny |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Sánchez, Luis Díaz, Félix Rojas, Jhonny |
| dc.subject.es_PE.fl_str_mv |
Vector Boson Fusion |
| topic |
Vector Boson Fusion https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
In this article, an analysis of the Higgs boson production via vector boson fusion in the SM H→WW→ 2l2ν (l = e, μ) is performed from an optimization technique in the event selection, called DNN analysis. This analysis compares the standard selection process that CERN performs to study the production of a particle from a cut-based analysis, where the study of statistical significance shows that DNN analysis can better separate signal and background events. To perform the DNN analysis, we optimized the neural network configuration to discriminate signal and background events effectively. Moreover, studies of activation functions such as RELU and Sigmoid, stochastic optimization methods such as ADAM, and regularization methods such as Dropout. All this leads to constructing an optimal neural network topology capable of learning events and signal and background discrimination. Finally, we found an important improvement of approximately 47 % and 27 % for and , respectively. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-12-20T20:41:58Z |
| dc.date.available.none.fl_str_mv |
2023-12-20T20:41:58Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/2885 |
| dc.identifier.journal.es_PE.fl_str_mv |
LACCEI international Multi-conference for Engineering, Education and Technology |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18687/LACCEI2023.1.1.1072 |
| url |
https://hdl.handle.net/20.500.13067/2885 https://doi.org/10.18687/LACCEI2023.1.1.1072 |
| identifier_str_mv |
LACCEI international Multi-conference for Engineering, Education and Technology |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
LACCEI international Multi-conference for Engineering, Education and Technology |
| dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
| instname_str |
Universidad Autónoma del Perú |
| instacron_str |
AUTONOMA |
| institution |
AUTONOMA |
| reponame_str |
AUTONOMA-Institucional |
| collection |
AUTONOMA-Institucional |
| dc.source.beginpage.es_PE.fl_str_mv |
1 |
| dc.source.endpage.es_PE.fl_str_mv |
9 |
| bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/1/93_2023.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/3/93_2023.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2885/4/93_2023.pdf.jpg |
| bitstream.checksum.fl_str_mv |
ba9ab5ade8b985c11cbdacf58fa59796 9243398ff393db1861c890baeaeee5f9 3ac7be17a6430394a63777827e90817d 523787f262cee29e1cd58f6e2016833c |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
| repository.mail.fl_str_mv |
repositorio@autonoma.pe |
| _version_ |
1846696197455085568 |
| score |
13.413335 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).