Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria
Descripción del Articulo
        Commonly the searching and identification of new particles, requires to reach highest efficiencies and purities as well. It demands to apply a chain of cuts that reject the background substantially. In most cases the processes to extract signal from the background is carried out by hand with some as...
              
            
    
                        | Autor: | |
|---|---|
| Formato: | artículo | 
| Fecha de Publicación: | 2020 | 
| Institución: | Universidad Autónoma del Perú | 
| Repositorio: | AUTONOMA-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1714 | 
| Enlace del recurso: | https://hdl.handle.net/20.500.13067/1714 https://doi.org/10.1007/978-3-030-46785-2_29  | 
| Nivel de acceso: | acceso restringido | 
| Materia: | Data analysis Particle Physics Experiments Machine learning https://purl.org/pe-repo/ocde/ford#2.02.04  | 
| id | 
                  AUTO_b864ad7511547380c878553bd3eba88c | 
    
|---|---|
| oai_identifier_str | 
                  oai:repositorio.autonoma.edu.pe:20.500.13067/1714 | 
    
| network_acronym_str | 
                  AUTO | 
    
| network_name_str | 
                  AUTONOMA-Institucional | 
    
| repository_id_str | 
                  4774 | 
    
| spelling | 
                  Nieto-Chaupis, Huber2022-03-03T17:59:12Z2022-03-03T17:59:12Z2020Nieto-Chaupis, H. (2019, December). Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria. In International Conference on Smart Technologies, Systems and Applications (pp. 364-374). Springer, Cham.978-3-030-46785-2https://hdl.handle.net/20.500.13067/1714Communications in Computer and Information Sciencehttps://doi.org/10.1007/978-3-030-46785-2_29Commonly the searching and identification of new particles, requires to reach highest efficiencies and purities as well. It demands to apply a chain of cuts that reject the background substantially. In most cases the processes to extract signal from the background is carried out by hand with some assistance of well designed and intelligent codes that save time and resources in high energy physics experiments. In this paper we present one application of the Mitchell’s criteria to extract efficiently beyond Standard Model signal events yielding an error of order of 1.22%. The usage of Machine Learning schemes appears to be advantageous when large volumes of data need to be scrutinized.application/pdfengSpringerPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA1154364374reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAData analysisParticle Physics ExperimentsMachine learninghttps://purl.org/pe-repo/ocde/ford#2.02.04Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteriainfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084805724&doi=10.1007%2f978-3-030-46785-2_29&partnerID=40&md5ORIGINALData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdfData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdfVer fuenteapplication/pdf100036http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/3/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf257387f9921de96bb5bc5f6de1241889MD53TEXTData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdf.txtData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdf.txtExtracted texttext/plain512http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/4/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf.txtdfb2be145c64520aa94ba50a1d040be9MD54THUMBNAILData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdf.jpgData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdf.jpgGenerated Thumbnailimage/jpeg5621http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/5/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf.jpga320981a037c082a80a9dde16a1d09c2MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/1714oai:repositorio.autonoma.edu.pe:20.500.13067/17142022-03-04 03:00:26.013Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe | 
    
| dc.title.es_PE.fl_str_mv | 
                  Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria | 
    
| title | 
                  Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria | 
    
| spellingShingle | 
                  Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria Nieto-Chaupis, Huber Data analysis Particle Physics Experiments Machine learning https://purl.org/pe-repo/ocde/ford#2.02.04  | 
    
| title_short | 
                  Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria | 
    
| title_full | 
                  Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria | 
    
| title_fullStr | 
                  Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria | 
    
| title_full_unstemmed | 
                  Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria | 
    
| title_sort | 
                  Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria | 
    
| author | 
                  Nieto-Chaupis, Huber | 
    
| author_facet | 
                  Nieto-Chaupis, Huber | 
    
| author_role | 
                  author | 
    
| dc.contributor.author.fl_str_mv | 
                  Nieto-Chaupis, Huber | 
    
| dc.subject.es_PE.fl_str_mv | 
                  Data analysis Particle Physics Experiments Machine learning  | 
    
| topic | 
                  Data analysis Particle Physics Experiments Machine learning https://purl.org/pe-repo/ocde/ford#2.02.04  | 
    
| dc.subject.ocde.es_PE.fl_str_mv | 
                  https://purl.org/pe-repo/ocde/ford#2.02.04 | 
    
| description | 
                  Commonly the searching and identification of new particles, requires to reach highest efficiencies and purities as well. It demands to apply a chain of cuts that reject the background substantially. In most cases the processes to extract signal from the background is carried out by hand with some assistance of well designed and intelligent codes that save time and resources in high energy physics experiments. In this paper we present one application of the Mitchell’s criteria to extract efficiently beyond Standard Model signal events yielding an error of order of 1.22%. The usage of Machine Learning schemes appears to be advantageous when large volumes of data need to be scrutinized. | 
    
| publishDate | 
                  2020 | 
    
| dc.date.accessioned.none.fl_str_mv | 
                  2022-03-03T17:59:12Z | 
    
| dc.date.available.none.fl_str_mv | 
                  2022-03-03T17:59:12Z | 
    
| dc.date.issued.fl_str_mv | 
                  2020 | 
    
| dc.type.es_PE.fl_str_mv | 
                  info:eu-repo/semantics/article | 
    
| format | 
                  article | 
    
| dc.identifier.citation.es_PE.fl_str_mv | 
                  Nieto-Chaupis, H. (2019, December). Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria. In International Conference on Smart Technologies, Systems and Applications (pp. 364-374). Springer, Cham. | 
    
| dc.identifier.isbn.none.fl_str_mv | 
                  978-3-030-46785-2 | 
    
| dc.identifier.uri.none.fl_str_mv | 
                  https://hdl.handle.net/20.500.13067/1714 | 
    
| dc.identifier.journal.es_PE.fl_str_mv | 
                  Communications in Computer and Information Science | 
    
| dc.identifier.doi.none.fl_str_mv | 
                  https://doi.org/10.1007/978-3-030-46785-2_29 | 
    
| identifier_str_mv | 
                  Nieto-Chaupis, H. (2019, December). Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria. In International Conference on Smart Technologies, Systems and Applications (pp. 364-374). Springer, Cham. 978-3-030-46785-2 Communications in Computer and Information Science  | 
    
| url | 
                  https://hdl.handle.net/20.500.13067/1714 https://doi.org/10.1007/978-3-030-46785-2_29  | 
    
| dc.language.iso.es_PE.fl_str_mv | 
                  eng | 
    
| language | 
                  eng | 
    
| dc.relation.url.es_PE.fl_str_mv | 
                  https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084805724&doi=10.1007%2f978-3-030-46785-2_29&partnerID=40&md5 | 
    
| dc.rights.es_PE.fl_str_mv | 
                  info:eu-repo/semantics/restrictedAccess | 
    
| dc.rights.uri.es_PE.fl_str_mv | 
                  https://creativecommons.org/licenses/by-nc-nd/4.0/ | 
    
| eu_rights_str_mv | 
                  restrictedAccess | 
    
| rights_invalid_str_mv | 
                  https://creativecommons.org/licenses/by-nc-nd/4.0/ | 
    
| dc.format.es_PE.fl_str_mv | 
                  application/pdf | 
    
| dc.publisher.es_PE.fl_str_mv | 
                  Springer | 
    
| dc.publisher.country.es_PE.fl_str_mv | 
                  PE | 
    
| dc.source.es_PE.fl_str_mv | 
                  AUTONOMA | 
    
| dc.source.none.fl_str_mv | 
                  reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA  | 
    
| instname_str | 
                  Universidad Autónoma del Perú | 
    
| instacron_str | 
                  AUTONOMA | 
    
| institution | 
                  AUTONOMA | 
    
| reponame_str | 
                  AUTONOMA-Institucional | 
    
| collection | 
                  AUTONOMA-Institucional | 
    
| dc.source.volume.es_PE.fl_str_mv | 
                  1154 | 
    
| dc.source.beginpage.es_PE.fl_str_mv | 
                  364 | 
    
| dc.source.endpage.es_PE.fl_str_mv | 
                  374 | 
    
| bitstream.url.fl_str_mv | 
                  http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/3/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/4/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/5/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/2/license.txt  | 
    
| bitstream.checksum.fl_str_mv | 
                  257387f9921de96bb5bc5f6de1241889 dfb2be145c64520aa94ba50a1d040be9 a320981a037c082a80a9dde16a1d09c2 9243398ff393db1861c890baeaeee5f9  | 
    
| bitstream.checksumAlgorithm.fl_str_mv | 
                  MD5 MD5 MD5 MD5  | 
    
| repository.name.fl_str_mv | 
                  Repositorio de la Universidad Autonoma del Perú | 
    
| repository.mail.fl_str_mv | 
                  repositorio@autonoma.pe | 
    
| _version_ | 
                  1774399974642024448 | 
    
| score | 
                  13.977305 | 
    
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).