Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria

Descripción del Articulo

Commonly the searching and identification of new particles, requires to reach highest efficiencies and purities as well. It demands to apply a chain of cuts that reject the background substantially. In most cases the processes to extract signal from the background is carried out by hand with some as...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1714
Enlace del recurso:https://hdl.handle.net/20.500.13067/1714
https://doi.org/10.1007/978-3-030-46785-2_29
Nivel de acceso:acceso restringido
Materia:Data analysis
Particle Physics Experiments
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_b864ad7511547380c878553bd3eba88c
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/1714
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Nieto-Chaupis, Huber2022-03-03T17:59:12Z2022-03-03T17:59:12Z2020Nieto-Chaupis, H. (2019, December). Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria. In International Conference on Smart Technologies, Systems and Applications (pp. 364-374). Springer, Cham.978-3-030-46785-2https://hdl.handle.net/20.500.13067/1714Communications in Computer and Information Sciencehttps://doi.org/10.1007/978-3-030-46785-2_29Commonly the searching and identification of new particles, requires to reach highest efficiencies and purities as well. It demands to apply a chain of cuts that reject the background substantially. In most cases the processes to extract signal from the background is carried out by hand with some assistance of well designed and intelligent codes that save time and resources in high energy physics experiments. In this paper we present one application of the Mitchell’s criteria to extract efficiently beyond Standard Model signal events yielding an error of order of 1.22%. The usage of Machine Learning schemes appears to be advantageous when large volumes of data need to be scrutinized.application/pdfengSpringerPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA1154364374reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAData analysisParticle Physics ExperimentsMachine learninghttps://purl.org/pe-repo/ocde/ford#2.02.04Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteriainfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084805724&doi=10.1007%2f978-3-030-46785-2_29&partnerID=40&md5ORIGINALData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdfData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdfVer fuenteapplication/pdf100036http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/3/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf257387f9921de96bb5bc5f6de1241889MD53TEXTData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdf.txtData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdf.txtExtracted texttext/plain512http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/4/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf.txtdfb2be145c64520aa94ba50a1d040be9MD54THUMBNAILData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdf.jpgData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria.pdf.jpgGenerated Thumbnailimage/jpeg5621http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/5/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf.jpga320981a037c082a80a9dde16a1d09c2MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/1714oai:repositorio.autonoma.edu.pe:20.500.13067/17142022-03-04 03:00:26.013Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe
dc.title.es_PE.fl_str_mv Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria
title Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria
spellingShingle Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria
Nieto-Chaupis, Huber
Data analysis
Particle Physics Experiments
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria
title_full Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria
title_fullStr Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria
title_full_unstemmed Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria
title_sort Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria
author Nieto-Chaupis, Huber
author_facet Nieto-Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto-Chaupis, Huber
dc.subject.es_PE.fl_str_mv Data analysis
Particle Physics Experiments
Machine learning
topic Data analysis
Particle Physics Experiments
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Commonly the searching and identification of new particles, requires to reach highest efficiencies and purities as well. It demands to apply a chain of cuts that reject the background substantially. In most cases the processes to extract signal from the background is carried out by hand with some assistance of well designed and intelligent codes that save time and resources in high energy physics experiments. In this paper we present one application of the Mitchell’s criteria to extract efficiently beyond Standard Model signal events yielding an error of order of 1.22%. The usage of Machine Learning schemes appears to be advantageous when large volumes of data need to be scrutinized.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2022-03-03T17:59:12Z
dc.date.available.none.fl_str_mv 2022-03-03T17:59:12Z
dc.date.issued.fl_str_mv 2020
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Nieto-Chaupis, H. (2019, December). Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria. In International Conference on Smart Technologies, Systems and Applications (pp. 364-374). Springer, Cham.
dc.identifier.isbn.none.fl_str_mv 978-3-030-46785-2
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/1714
dc.identifier.journal.es_PE.fl_str_mv Communications in Computer and Information Science
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-46785-2_29
identifier_str_mv Nieto-Chaupis, H. (2019, December). Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria. In International Conference on Smart Technologies, Systems and Applications (pp. 364-374). Springer, Cham.
978-3-030-46785-2
Communications in Computer and Information Science
url https://hdl.handle.net/20.500.13067/1714
https://doi.org/10.1007/978-3-030-46785-2_29
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084805724&doi=10.1007%2f978-3-030-46785-2_29&partnerID=40&md5
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Springer
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 1154
dc.source.beginpage.es_PE.fl_str_mv 364
dc.source.endpage.es_PE.fl_str_mv 374
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/3/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/4/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/5/Data%20Analysis%20of%20Particle%20Physics%20Experiments%20Based%20on%20Machine%20Learning%20and%20the%20Mitchell%e2%80%99s%20Criteria.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1714/2/license.txt
bitstream.checksum.fl_str_mv 257387f9921de96bb5bc5f6de1241889
dfb2be145c64520aa94ba50a1d040be9
a320981a037c082a80a9dde16a1d09c2
9243398ff393db1861c890baeaeee5f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1774399974642024448
score 13.977305
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).