Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru

Descripción del Articulo

This study evaluates the effectiveness of advanced statistical and geospatial methods for analyzing radon concentration distributions in indoor environments, using the district of San Martín de Porres, Lima, Peru, as a case study. Radon levels were monitored using LR-115 nuclear track detectors over...

Descripción completa

Detalles Bibliográficos
Autores: Liza, Rafael, Díaz, Félix, Pereyra, Patrizia, Palacios, Daniel, Cerna, Nhell, Curo, Luis, Riva, Max
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/3634
Enlace del recurso:https://hdl.handle.net/20.500.13067/3634
https://doi.org/10.3390/eng6010014
Nivel de acceso:acceso abierto
Materia:Radon
Statistical methods
Environmental monitoring
Geostatistical mapping
Public health
https://purl.org/pe-repo/ocde/ford#2.01.00
id AUTO_85769c2417c5d31ae99698c5e310fd3b
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/3634
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Liza, RafaelDíaz, FélixPereyra, PatriziaPalacios, DanielCerna, NhellCuro, LuisRiva, Max2025-02-12T16:31:25Z2025-02-12T16:31:25Z2025-02-12https://hdl.handle.net/20.500.13067/3634Enghttps://doi.org/10.3390/eng6010014This study evaluates the effectiveness of advanced statistical and geospatial methods for analyzing radon concentration distributions in indoor environments, using the district of San Martín de Porres, Lima, Peru, as a case study. Radon levels were monitored using LR-115 nuclear track detectors over three distinct measurement periods between 2015 and 2016, with 86 households participating. Detectors were randomly placed in various rooms within each household. Normality tests (Shapiro–Wilk, Anderson–Darling, and Kolmogorov–Smirnov) were applied to assess the fit of radon concentrations to a log-normal distribution. Additionally, analysis of variance (ANOVA) was used to evaluate the influence of environmental and structural factors on radon variability. Non-normally distributed data were normalized using a Box–Cox transformation to improve statistical assumptions, enabling subsequent geostatistical analyses. Geospatial interpolation methods, specifically Inverse Distance Weighting (IDW) and Kriging, were employed to map radon concentrations. The results revealed significant temporal variability in radon concentrations, with geometric means of 146.4 Bq·m−3 , 162.3 Bq·m−3 , and 150.8 Bq·m−3 , respectively, across the three periods. Up to 9.5% of the monitored households recorded radon levels exceeding the safety threshold of 200 Bq·m−3 . Among the interpolatio methods, Kriging provided a more accurate spatial representation of radon concentration variability compared to IDW, allowing for the precise identification of high-risk areas. This study provides a framework for using advanced statistical and geospatial techniques in environmental risk assessment.application/pdfengMDPIPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/RadonStatistical methodsEnvironmental monitoringGeostatistical mappingPublic healthhttps://purl.org/pe-repo/ocde/ford#2.01.00Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peruinfo:eu-repo/semantics/article614114reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL125.pdf125.pdfArtículoapplication/pdf2380057http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/1/125.pdfd0501037a53e94ea8ee137abc8b3d150MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT125.pdf.txt125.pdf.txtExtracted texttext/plain44805http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/3/125.pdf.txt3f349d8b94b737d4f202acbbf3c5d427MD53THUMBNAIL125.pdf.jpg125.pdf.jpgGenerated Thumbnailimage/jpeg6959http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/4/125.pdf.jpgff4642d4957eca660ae4ade07c758443MD5420.500.13067/3634oai:repositorio.autonoma.edu.pe:20.500.13067/36342025-02-13 03:01:07.436Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru
title Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru
spellingShingle Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru
Liza, Rafael
Radon
Statistical methods
Environmental monitoring
Geostatistical mapping
Public health
https://purl.org/pe-repo/ocde/ford#2.01.00
title_short Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru
title_full Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru
title_fullStr Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru
title_full_unstemmed Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru
title_sort Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru
author Liza, Rafael
author_facet Liza, Rafael
Díaz, Félix
Pereyra, Patrizia
Palacios, Daniel
Cerna, Nhell
Curo, Luis
Riva, Max
author_role author
author2 Díaz, Félix
Pereyra, Patrizia
Palacios, Daniel
Cerna, Nhell
Curo, Luis
Riva, Max
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Liza, Rafael
Díaz, Félix
Pereyra, Patrizia
Palacios, Daniel
Cerna, Nhell
Curo, Luis
Riva, Max
dc.subject.es_PE.fl_str_mv Radon
Statistical methods
Environmental monitoring
Geostatistical mapping
Public health
topic Radon
Statistical methods
Environmental monitoring
Geostatistical mapping
Public health
https://purl.org/pe-repo/ocde/ford#2.01.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.01.00
description This study evaluates the effectiveness of advanced statistical and geospatial methods for analyzing radon concentration distributions in indoor environments, using the district of San Martín de Porres, Lima, Peru, as a case study. Radon levels were monitored using LR-115 nuclear track detectors over three distinct measurement periods between 2015 and 2016, with 86 households participating. Detectors were randomly placed in various rooms within each household. Normality tests (Shapiro–Wilk, Anderson–Darling, and Kolmogorov–Smirnov) were applied to assess the fit of radon concentrations to a log-normal distribution. Additionally, analysis of variance (ANOVA) was used to evaluate the influence of environmental and structural factors on radon variability. Non-normally distributed data were normalized using a Box–Cox transformation to improve statistical assumptions, enabling subsequent geostatistical analyses. Geospatial interpolation methods, specifically Inverse Distance Weighting (IDW) and Kriging, were employed to map radon concentrations. The results revealed significant temporal variability in radon concentrations, with geometric means of 146.4 Bq·m−3 , 162.3 Bq·m−3 , and 150.8 Bq·m−3 , respectively, across the three periods. Up to 9.5% of the monitored households recorded radon levels exceeding the safety threshold of 200 Bq·m−3 . Among the interpolatio methods, Kriging provided a more accurate spatial representation of radon concentration variability compared to IDW, allowing for the precise identification of high-risk areas. This study provides a framework for using advanced statistical and geospatial techniques in environmental risk assessment.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-12T16:31:25Z
dc.date.available.none.fl_str_mv 2025-02-12T16:31:25Z
dc.date.issued.fl_str_mv 2025-02-12
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/3634
dc.identifier.journal.es_PE.fl_str_mv Eng
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/eng6010014
url https://hdl.handle.net/20.500.13067/3634
https://doi.org/10.3390/eng6010014
identifier_str_mv Eng
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 6
dc.source.issue.es_PE.fl_str_mv 14
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 14
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/1/125.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/3/125.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/4/125.pdf.jpg
bitstream.checksum.fl_str_mv d0501037a53e94ea8ee137abc8b3d150
9243398ff393db1861c890baeaeee5f9
3f349d8b94b737d4f202acbbf3c5d427
ff4642d4957eca660ae4ade07c758443
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915454603853824
score 13.982926
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).