Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru
Descripción del Articulo
This study evaluates the effectiveness of advanced statistical and geospatial methods for analyzing radon concentration distributions in indoor environments, using the district of San Martín de Porres, Lima, Peru, as a case study. Radon levels were monitored using LR-115 nuclear track detectors over...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2025 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/3634 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/3634 https://doi.org/10.3390/eng6010014 |
Nivel de acceso: | acceso abierto |
Materia: | Radon Statistical methods Environmental monitoring Geostatistical mapping Public health https://purl.org/pe-repo/ocde/ford#2.01.00 |
id |
AUTO_85769c2417c5d31ae99698c5e310fd3b |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/3634 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Liza, RafaelDíaz, FélixPereyra, PatriziaPalacios, DanielCerna, NhellCuro, LuisRiva, Max2025-02-12T16:31:25Z2025-02-12T16:31:25Z2025-02-12https://hdl.handle.net/20.500.13067/3634Enghttps://doi.org/10.3390/eng6010014This study evaluates the effectiveness of advanced statistical and geospatial methods for analyzing radon concentration distributions in indoor environments, using the district of San Martín de Porres, Lima, Peru, as a case study. Radon levels were monitored using LR-115 nuclear track detectors over three distinct measurement periods between 2015 and 2016, with 86 households participating. Detectors were randomly placed in various rooms within each household. Normality tests (Shapiro–Wilk, Anderson–Darling, and Kolmogorov–Smirnov) were applied to assess the fit of radon concentrations to a log-normal distribution. Additionally, analysis of variance (ANOVA) was used to evaluate the influence of environmental and structural factors on radon variability. Non-normally distributed data were normalized using a Box–Cox transformation to improve statistical assumptions, enabling subsequent geostatistical analyses. Geospatial interpolation methods, specifically Inverse Distance Weighting (IDW) and Kriging, were employed to map radon concentrations. The results revealed significant temporal variability in radon concentrations, with geometric means of 146.4 Bq·m−3 , 162.3 Bq·m−3 , and 150.8 Bq·m−3 , respectively, across the three periods. Up to 9.5% of the monitored households recorded radon levels exceeding the safety threshold of 200 Bq·m−3 . Among the interpolatio methods, Kriging provided a more accurate spatial representation of radon concentration variability compared to IDW, allowing for the precise identification of high-risk areas. This study provides a framework for using advanced statistical and geospatial techniques in environmental risk assessment.application/pdfengMDPIPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/RadonStatistical methodsEnvironmental monitoringGeostatistical mappingPublic healthhttps://purl.org/pe-repo/ocde/ford#2.01.00Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peruinfo:eu-repo/semantics/article614114reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL125.pdf125.pdfArtículoapplication/pdf2380057http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/1/125.pdfd0501037a53e94ea8ee137abc8b3d150MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT125.pdf.txt125.pdf.txtExtracted texttext/plain44805http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/3/125.pdf.txt3f349d8b94b737d4f202acbbf3c5d427MD53THUMBNAIL125.pdf.jpg125.pdf.jpgGenerated Thumbnailimage/jpeg6959http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/4/125.pdf.jpgff4642d4957eca660ae4ade07c758443MD5420.500.13067/3634oai:repositorio.autonoma.edu.pe:20.500.13067/36342025-02-13 03:01:07.436Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
dc.title.es_PE.fl_str_mv |
Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru |
title |
Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru |
spellingShingle |
Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru Liza, Rafael Radon Statistical methods Environmental monitoring Geostatistical mapping Public health https://purl.org/pe-repo/ocde/ford#2.01.00 |
title_short |
Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru |
title_full |
Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru |
title_fullStr |
Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru |
title_full_unstemmed |
Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru |
title_sort |
Application of Statistical Methods for the Characterization of Radon Distribution in Indoor Environments: A Case Study in Lima, Peru |
author |
Liza, Rafael |
author_facet |
Liza, Rafael Díaz, Félix Pereyra, Patrizia Palacios, Daniel Cerna, Nhell Curo, Luis Riva, Max |
author_role |
author |
author2 |
Díaz, Félix Pereyra, Patrizia Palacios, Daniel Cerna, Nhell Curo, Luis Riva, Max |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Liza, Rafael Díaz, Félix Pereyra, Patrizia Palacios, Daniel Cerna, Nhell Curo, Luis Riva, Max |
dc.subject.es_PE.fl_str_mv |
Radon Statistical methods Environmental monitoring Geostatistical mapping Public health |
topic |
Radon Statistical methods Environmental monitoring Geostatistical mapping Public health https://purl.org/pe-repo/ocde/ford#2.01.00 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.01.00 |
description |
This study evaluates the effectiveness of advanced statistical and geospatial methods for analyzing radon concentration distributions in indoor environments, using the district of San Martín de Porres, Lima, Peru, as a case study. Radon levels were monitored using LR-115 nuclear track detectors over three distinct measurement periods between 2015 and 2016, with 86 households participating. Detectors were randomly placed in various rooms within each household. Normality tests (Shapiro–Wilk, Anderson–Darling, and Kolmogorov–Smirnov) were applied to assess the fit of radon concentrations to a log-normal distribution. Additionally, analysis of variance (ANOVA) was used to evaluate the influence of environmental and structural factors on radon variability. Non-normally distributed data were normalized using a Box–Cox transformation to improve statistical assumptions, enabling subsequent geostatistical analyses. Geospatial interpolation methods, specifically Inverse Distance Weighting (IDW) and Kriging, were employed to map radon concentrations. The results revealed significant temporal variability in radon concentrations, with geometric means of 146.4 Bq·m−3 , 162.3 Bq·m−3 , and 150.8 Bq·m−3 , respectively, across the three periods. Up to 9.5% of the monitored households recorded radon levels exceeding the safety threshold of 200 Bq·m−3 . Among the interpolatio methods, Kriging provided a more accurate spatial representation of radon concentration variability compared to IDW, allowing for the precise identification of high-risk areas. This study provides a framework for using advanced statistical and geospatial techniques in environmental risk assessment. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-02-12T16:31:25Z |
dc.date.available.none.fl_str_mv |
2025-02-12T16:31:25Z |
dc.date.issued.fl_str_mv |
2025-02-12 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/3634 |
dc.identifier.journal.es_PE.fl_str_mv |
Eng |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/eng6010014 |
url |
https://hdl.handle.net/20.500.13067/3634 https://doi.org/10.3390/eng6010014 |
identifier_str_mv |
Eng |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
MDPI |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
6 |
dc.source.issue.es_PE.fl_str_mv |
14 |
dc.source.beginpage.es_PE.fl_str_mv |
1 |
dc.source.endpage.es_PE.fl_str_mv |
14 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/1/125.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/3/125.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3634/4/125.pdf.jpg |
bitstream.checksum.fl_str_mv |
d0501037a53e94ea8ee137abc8b3d150 9243398ff393db1861c890baeaeee5f9 3f349d8b94b737d4f202acbbf3c5d427 ff4642d4957eca660ae4ade07c758443 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915454603853824 |
score |
13.982926 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).