Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present

Descripción del Articulo

The data of infections by Covid-19 is modeled through the integer-order Bessel functions that have been parametrized in according to the morphology of data. In particular, the modeling is focused on official data belonging to UK, Germany, Italy and Netherlands. The free parameters of model have been...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1813
Enlace del recurso:https://hdl.handle.net/20.500.13067/1813
https://doi.org/10.1109/TransAI51903.2021.00021
Nivel de acceso:acceso restringido
Materia:COVID-19
Pandemics
Morphology
Europe
Data models
Artificial intelligence
Strain
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_6d9462e6dc4d49bc9e884a9f16de623e
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/1813
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Nieto-Chaupis, Huber2022-04-29T17:33:18Z2022-04-29T17:33:18Z2021-10-18Nieto-Chaupis, H. (2021). Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present. In 2021 Third International Conference on Transdisciplinary AI (TransAI) (pp. 72-73). IEEE.978-1-6654-3412-6https://hdl.handle.net/20.500.13067/18132021 Third International Conference on Transdisciplinary AI (TransAI)https://doi.org/10.1109/TransAI51903.2021.00021The data of infections by Covid-19 is modeled through the integer-order Bessel functions that have been parametrized in according to the morphology of data. In particular, the modeling is focused on official data belonging to UK, Germany, Italy and Netherlands. The free parameters of model have been coherently linked to data. Interestingly, it was seen that a "silent period" with the lowest cases of infections play a relevant role for new pandemics as well as the apparition of new strains, such as the most recent "delta-variant".application/pdfengUniversidad Autónoma del PerúPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA7273reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMACOVID-19PandemicsMorphologyEuropeData modelsArtificial intelligenceStrainhttps://purl.org/pe-repo/ocde/ford#2.02.04Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Presentinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85125840882&doi=10.1109%2fTransAI51903.2021.00021&partnerID=40TEXTPredictive Theory of Covid-19 Infections at European Countries Through Bessel Functions Past and Present.pdf.txtPredictive Theory of Covid-19 Infections at European Countries Through Bessel Functions Past and Present.pdf.txtExtracted texttext/plain580http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1813/4/Predictive%20Theory%20of%20Covid-19%20Infections%20at%20European%20Countries%20Through%20Bessel%20Functions%20Past%20and%20Present.pdf.txt3afa8a8412f5799dad90c34b25b61facMD54THUMBNAILPredictive Theory of Covid-19 Infections at European Countries Through Bessel Functions Past and Present.pdf.jpgPredictive Theory of Covid-19 Infections at European Countries Through Bessel Functions Past and Present.pdf.jpgGenerated Thumbnailimage/jpeg5738http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1813/5/Predictive%20Theory%20of%20Covid-19%20Infections%20at%20European%20Countries%20Through%20Bessel%20Functions%20Past%20and%20Present.pdf.jpg3264b910b9fa94c0f6ae62c42d2e2933MD55ORIGINALPredictive Theory of Covid-19 Infections at European Countries Through Bessel Functions Past and Present.pdfPredictive Theory of Covid-19 Infections at European Countries Through Bessel Functions Past and Present.pdfVer fuenteapplication/pdf98255http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1813/3/Predictive%20Theory%20of%20Covid-19%20Infections%20at%20European%20Countries%20Through%20Bessel%20Functions%20Past%20and%20Present.pdf8c0a5f347cd0c1f3e1698bcc1e0bf986MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1813/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/1813oai:repositorio.autonoma.edu.pe:20.500.13067/18132022-04-30 03:00:22.038Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe
dc.title.es_PE.fl_str_mv Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present
title Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present
spellingShingle Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present
Nieto-Chaupis, Huber
COVID-19
Pandemics
Morphology
Europe
Data models
Artificial intelligence
Strain
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present
title_full Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present
title_fullStr Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present
title_full_unstemmed Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present
title_sort Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present
author Nieto-Chaupis, Huber
author_facet Nieto-Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto-Chaupis, Huber
dc.subject.es_PE.fl_str_mv COVID-19
Pandemics
Morphology
Europe
Data models
Artificial intelligence
Strain
topic COVID-19
Pandemics
Morphology
Europe
Data models
Artificial intelligence
Strain
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description The data of infections by Covid-19 is modeled through the integer-order Bessel functions that have been parametrized in according to the morphology of data. In particular, the modeling is focused on official data belonging to UK, Germany, Italy and Netherlands. The free parameters of model have been coherently linked to data. Interestingly, it was seen that a "silent period" with the lowest cases of infections play a relevant role for new pandemics as well as the apparition of new strains, such as the most recent "delta-variant".
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2022-04-29T17:33:18Z
dc.date.available.none.fl_str_mv 2022-04-29T17:33:18Z
dc.date.issued.fl_str_mv 2021-10-18
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Nieto-Chaupis, H. (2021). Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present. In 2021 Third International Conference on Transdisciplinary AI (TransAI) (pp. 72-73). IEEE.
dc.identifier.isbn.none.fl_str_mv 978-1-6654-3412-6
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/1813
dc.identifier.journal.es_PE.fl_str_mv 2021 Third International Conference on Transdisciplinary AI (TransAI)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/TransAI51903.2021.00021
identifier_str_mv Nieto-Chaupis, H. (2021). Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present. In 2021 Third International Conference on Transdisciplinary AI (TransAI) (pp. 72-73). IEEE.
978-1-6654-3412-6
2021 Third International Conference on Transdisciplinary AI (TransAI)
url https://hdl.handle.net/20.500.13067/1813
https://doi.org/10.1109/TransAI51903.2021.00021
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125840882&doi=10.1109%2fTransAI51903.2021.00021&partnerID=40
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Autónoma del Perú
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.beginpage.es_PE.fl_str_mv 72
dc.source.endpage.es_PE.fl_str_mv 73
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1813/4/Predictive%20Theory%20of%20Covid-19%20Infections%20at%20European%20Countries%20Through%20Bessel%20Functions%20Past%20and%20Present.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1813/5/Predictive%20Theory%20of%20Covid-19%20Infections%20at%20European%20Countries%20Through%20Bessel%20Functions%20Past%20and%20Present.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1813/3/Predictive%20Theory%20of%20Covid-19%20Infections%20at%20European%20Countries%20Through%20Bessel%20Functions%20Past%20and%20Present.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1813/2/license.txt
bitstream.checksum.fl_str_mv 3afa8a8412f5799dad90c34b25b61fac
3264b910b9fa94c0f6ae62c42d2e2933
8c0a5f347cd0c1f3e1698bcc1e0bf986
9243398ff393db1861c890baeaeee5f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1774399977493102592
score 13.836569
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).