Predictive Theory of Covid-19 Infections at European Countries Through Bessel Functions: Past and Present

Descripción del Articulo

The data of infections by Covid-19 is modeled through the integer-order Bessel functions that have been parametrized in according to the morphology of data. In particular, the modeling is focused on official data belonging to UK, Germany, Italy and Netherlands. The free parameters of model have been...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1813
Enlace del recurso:https://hdl.handle.net/20.500.13067/1813
https://doi.org/10.1109/TransAI51903.2021.00021
Nivel de acceso:acceso restringido
Materia:COVID-19
Pandemics
Morphology
Europe
Data models
Artificial intelligence
Strain
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:The data of infections by Covid-19 is modeled through the integer-order Bessel functions that have been parametrized in according to the morphology of data. In particular, the modeling is focused on official data belonging to UK, Germany, Italy and Netherlands. The free parameters of model have been coherently linked to data. Interestingly, it was seen that a "silent period" with the lowest cases of infections play a relevant role for new pandemics as well as the apparition of new strains, such as the most recent "delta-variant".
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).