Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
Descripción del Articulo
Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitat...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/2872 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/2872 https://doi.org/10.11591/ijai.v12.i4.pp1713-1726 |
Nivel de acceso: | acceso abierto |
Materia: | Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_5b20f39f08dabec022b6d2934b4a4244 |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/2872 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Garcia-Rios, VictorMarres-Salhuana, MarietaSierra-Liñan, FernandoCabanillas-Carbonell, Michael2023-12-20T14:26:51Z2023-12-20T14:26:51Z2023https://hdl.handle.net/20.500.13067/2872IAES International Journal of Artificial Intelligencehttps://doi.org/10.11591/ijai.v12.i4.pp1713-1726Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitates the diagnosis of the dis-ease quickly and easily. Different machine learning models were designed and compared, being random forest was the algorithm that generated the model with the best performance (90.43% accuracy), which was integrated into a web platform, working with the PIMA dataset, which was validated by specialists from the Peruvian League for the Fight against Diabetes organization. The result was a decrease of (A) 88.28% in the information collection time, (B) 99.99% in the diagnosis time, (C) 44.42% in the diagnosis cost, and (D) 100% in the level of difficulty, concluding that the application of machine learning can significantly optimize the diagnostic process of type 2 diabetes mellitus.application/pdfengIAES International Journal of Artificial Intelligence (IJ-AI)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/DiagnosisMachine learningPredictionRandom forestType 2 diabetes mellitushttps://purl.org/pe-repo/ocde/ford#2.02.04Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2info:eu-repo/semantics/articlehttps://ijai.iaescore.com/index.php/IJAI/article/view/2222612417131726reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL33_2023.pdf33_2023.pdfArtículoapplication/pdf1174002http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/1/33_2023.pdfda50ed58c3d0d58dfc3e2e7f228a9149MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT33_2023.pdf.txt33_2023.pdf.txtExtracted texttext/plain47501http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/3/33_2023.pdf.txt3e63e05c4c2a76b973216f934a694129MD53THUMBNAIL33_2023.pdf.jpg33_2023.pdf.jpgGenerated Thumbnailimage/jpeg6554http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/4/33_2023.pdf.jpgc77ed2587876a8f75982ad962ee4c986MD5420.500.13067/2872oai:repositorio.autonoma.edu.pe:20.500.13067/28722023-12-21 03:00:32.604Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
dc.title.es_PE.fl_str_mv |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
title |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
spellingShingle |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 Garcia-Rios, Victor Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
title_full |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
title_fullStr |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
title_full_unstemmed |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
title_sort |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
author |
Garcia-Rios, Victor |
author_facet |
Garcia-Rios, Victor Marres-Salhuana, Marieta Sierra-Liñan, Fernando Cabanillas-Carbonell, Michael |
author_role |
author |
author2 |
Marres-Salhuana, Marieta Sierra-Liñan, Fernando Cabanillas-Carbonell, Michael |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Garcia-Rios, Victor Marres-Salhuana, Marieta Sierra-Liñan, Fernando Cabanillas-Carbonell, Michael |
dc.subject.es_PE.fl_str_mv |
Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus |
topic |
Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitates the diagnosis of the dis-ease quickly and easily. Different machine learning models were designed and compared, being random forest was the algorithm that generated the model with the best performance (90.43% accuracy), which was integrated into a web platform, working with the PIMA dataset, which was validated by specialists from the Peruvian League for the Fight against Diabetes organization. The result was a decrease of (A) 88.28% in the information collection time, (B) 99.99% in the diagnosis time, (C) 44.42% in the diagnosis cost, and (D) 100% in the level of difficulty, concluding that the application of machine learning can significantly optimize the diagnostic process of type 2 diabetes mellitus. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-12-20T14:26:51Z |
dc.date.available.none.fl_str_mv |
2023-12-20T14:26:51Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/2872 |
dc.identifier.journal.es_PE.fl_str_mv |
IAES International Journal of Artificial Intelligence |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.11591/ijai.v12.i4.pp1713-1726 |
url |
https://hdl.handle.net/20.500.13067/2872 https://doi.org/10.11591/ijai.v12.i4.pp1713-1726 |
identifier_str_mv |
IAES International Journal of Artificial Intelligence |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://ijai.iaescore.com/index.php/IJAI/article/view/22226 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
IAES International Journal of Artificial Intelligence (IJ-AI) |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
12 |
dc.source.issue.es_PE.fl_str_mv |
4 |
dc.source.beginpage.es_PE.fl_str_mv |
1713 |
dc.source.endpage.es_PE.fl_str_mv |
1726 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/1/33_2023.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/3/33_2023.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/4/33_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
da50ed58c3d0d58dfc3e2e7f228a9149 9243398ff393db1861c890baeaeee5f9 3e63e05c4c2a76b973216f934a694129 c77ed2587876a8f75982ad962ee4c986 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915523881172992 |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).