Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2

Descripción del Articulo

Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitat...

Descripción completa

Detalles Bibliográficos
Autores: Garcia-Rios, Victor, Marres-Salhuana, Marieta, Sierra-Liñan, Fernando, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2872
Enlace del recurso:https://hdl.handle.net/20.500.13067/2872
https://doi.org/10.11591/ijai.v12.i4.pp1713-1726
Nivel de acceso:acceso abierto
Materia:Diagnosis
Machine learning
Prediction
Random forest
Type 2 diabetes mellitus
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_5b20f39f08dabec022b6d2934b4a4244
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2872
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Garcia-Rios, VictorMarres-Salhuana, MarietaSierra-Liñan, FernandoCabanillas-Carbonell, Michael2023-12-20T14:26:51Z2023-12-20T14:26:51Z2023https://hdl.handle.net/20.500.13067/2872IAES International Journal of Artificial Intelligencehttps://doi.org/10.11591/ijai.v12.i4.pp1713-1726Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitates the diagnosis of the dis-ease quickly and easily. Different machine learning models were designed and compared, being random forest was the algorithm that generated the model with the best performance (90.43% accuracy), which was integrated into a web platform, working with the PIMA dataset, which was validated by specialists from the Peruvian League for the Fight against Diabetes organization. The result was a decrease of (A) 88.28% in the information collection time, (B) 99.99% in the diagnosis time, (C) 44.42% in the diagnosis cost, and (D) 100% in the level of difficulty, concluding that the application of machine learning can significantly optimize the diagnostic process of type 2 diabetes mellitus.application/pdfengIAES International Journal of Artificial Intelligence (IJ-AI)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/DiagnosisMachine learningPredictionRandom forestType 2 diabetes mellitushttps://purl.org/pe-repo/ocde/ford#2.02.04Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2info:eu-repo/semantics/articlehttps://ijai.iaescore.com/index.php/IJAI/article/view/2222612417131726reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL33_2023.pdf33_2023.pdfArtículoapplication/pdf1174002http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/1/33_2023.pdfda50ed58c3d0d58dfc3e2e7f228a9149MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT33_2023.pdf.txt33_2023.pdf.txtExtracted texttext/plain47501http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/3/33_2023.pdf.txt3e63e05c4c2a76b973216f934a694129MD53THUMBNAIL33_2023.pdf.jpg33_2023.pdf.jpgGenerated Thumbnailimage/jpeg6554http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/4/33_2023.pdf.jpgc77ed2587876a8f75982ad962ee4c986MD5420.500.13067/2872oai:repositorio.autonoma.edu.pe:20.500.13067/28722023-12-21 03:00:32.604Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
title Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
spellingShingle Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
Garcia-Rios, Victor
Diagnosis
Machine learning
Prediction
Random forest
Type 2 diabetes mellitus
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
title_full Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
title_fullStr Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
title_full_unstemmed Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
title_sort Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
author Garcia-Rios, Victor
author_facet Garcia-Rios, Victor
Marres-Salhuana, Marieta
Sierra-Liñan, Fernando
Cabanillas-Carbonell, Michael
author_role author
author2 Marres-Salhuana, Marieta
Sierra-Liñan, Fernando
Cabanillas-Carbonell, Michael
author2_role author
author
author
dc.contributor.author.fl_str_mv Garcia-Rios, Victor
Marres-Salhuana, Marieta
Sierra-Liñan, Fernando
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Diagnosis
Machine learning
Prediction
Random forest
Type 2 diabetes mellitus
topic Diagnosis
Machine learning
Prediction
Random forest
Type 2 diabetes mellitus
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitates the diagnosis of the dis-ease quickly and easily. Different machine learning models were designed and compared, being random forest was the algorithm that generated the model with the best performance (90.43% accuracy), which was integrated into a web platform, working with the PIMA dataset, which was validated by specialists from the Peruvian League for the Fight against Diabetes organization. The result was a decrease of (A) 88.28% in the information collection time, (B) 99.99% in the diagnosis time, (C) 44.42% in the diagnosis cost, and (D) 100% in the level of difficulty, concluding that the application of machine learning can significantly optimize the diagnostic process of type 2 diabetes mellitus.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-20T14:26:51Z
dc.date.available.none.fl_str_mv 2023-12-20T14:26:51Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2872
dc.identifier.journal.es_PE.fl_str_mv IAES International Journal of Artificial Intelligence
dc.identifier.doi.none.fl_str_mv https://doi.org/10.11591/ijai.v12.i4.pp1713-1726
url https://hdl.handle.net/20.500.13067/2872
https://doi.org/10.11591/ijai.v12.i4.pp1713-1726
identifier_str_mv IAES International Journal of Artificial Intelligence
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://ijai.iaescore.com/index.php/IJAI/article/view/22226
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv IAES International Journal of Artificial Intelligence (IJ-AI)
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 12
dc.source.issue.es_PE.fl_str_mv 4
dc.source.beginpage.es_PE.fl_str_mv 1713
dc.source.endpage.es_PE.fl_str_mv 1726
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/1/33_2023.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/3/33_2023.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2872/4/33_2023.pdf.jpg
bitstream.checksum.fl_str_mv da50ed58c3d0d58dfc3e2e7f228a9149
9243398ff393db1861c890baeaeee5f9
3e63e05c4c2a76b973216f934a694129
c77ed2587876a8f75982ad962ee4c986
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915523881172992
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).