Improving industrial security device detection with convolutional neural networks
Descripción del Articulo
Employee safety is paramount in the manufacturing industry to ensure their well-being and protection. Technological advancements, particularly convolutional neural networks (CNN), have significantly enhanced this safety aspect by facilitating object detection and recognition. This project aims to ut...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Autónoma del Perú |
| Repositorio: | AUTONOMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/3190 |
| Enlace del recurso: | https://hdl.handle.net/20.500.13067/3190 https://doi.org/10.3991/ijep.v14i3.47323 |
| Nivel de acceso: | acceso abierto |
| Materia: | CNNs Machine vision Security Sensing YOLOv5 https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
AUTO_49ca7224930c1bc4c8e4b6b32d563abc |
|---|---|
| oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/3190 |
| network_acronym_str |
AUTO |
| network_name_str |
AUTONOMA-Institucional |
| repository_id_str |
4774 |
| spelling |
Iparraguirre-Villanueva, OrlandoGonzales-Huaman, JosemariaMachuca-Solano, JoseRuiz-Alvarado, John2024-05-23T21:03:29Z2024-05-23T21:03:29Z2023https://hdl.handle.net/20.500.13067/3190Indonesian Journal of Electrical Engineering and Computer Sciencehttps://doi.org/10.3991/ijep.v14i3.47323Employee safety is paramount in the manufacturing industry to ensure their well-being and protection. Technological advancements, particularly convolutional neural networks (CNN), have significantly enhanced this safety aspect by facilitating object detection and recognition. This project aims to utilize CNN technology to detect personal protective equipment and implement a safety implement detection system. The CNN architecture with the YOLOv5x model was employed to train a dataset. Dataset videos were converted into frames, with resolution scale adjustments made during the data collection phase. Subsequently, the dataset was labeled, underwent data cleaning, and label and bounding box revisions. The results revealed significant metrics in safety equipment detection in industrial settings. Helmet precision reached 91%, with a recall of 74%. Goggles achieved 85% precision and an 87% recall. Mask absence recorded 92% precision and an 89% recall. The YOLOv5x model exhibited commendable performance, showcasing its robust ability to accurately locate and detect objects. In conclusion, the utilization of a CNN-based safety equipment detection system, such as YOLOv5x, has yielded substantial improvements in both speed and accuracy. These findings lay a solid foundation for future industrial security applications aimed at safeguarding workers, fostering responsible workplace behavior, and optimizing the utilization of information technology resources.application/pdfengInstitute of Advanced Engineering and Science (IAES)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/CNNsMachine visionSecuritySensingYOLOv5https://purl.org/pe-repo/ocde/ford#2.02.04Improving industrial security device detection with convolutional neural networksinfo:eu-repo/semantics/article34319351943reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL27.pdf27.pdfArtículoapplication/pdf608495http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/1/27.pdf23168041f32ec308aebfa94fa0793886MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT27.pdf.txt27.pdf.txtExtracted texttext/plain38184http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/3/27.pdf.txt185fbf85a75e6c5a67db0a0ec05a9db6MD53THUMBNAIL27.pdf.jpg27.pdf.jpgGenerated Thumbnailimage/jpeg6562http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/4/27.pdf.jpg3f1fefb4a3d0614af500e11cb4cb479bMD5420.500.13067/3190oai:repositorio.autonoma.edu.pe:20.500.13067/31902025-01-06 16:19:25.604Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
| dc.title.es_PE.fl_str_mv |
Improving industrial security device detection with convolutional neural networks |
| title |
Improving industrial security device detection with convolutional neural networks |
| spellingShingle |
Improving industrial security device detection with convolutional neural networks Iparraguirre-Villanueva, Orlando CNNs Machine vision Security Sensing YOLOv5 https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Improving industrial security device detection with convolutional neural networks |
| title_full |
Improving industrial security device detection with convolutional neural networks |
| title_fullStr |
Improving industrial security device detection with convolutional neural networks |
| title_full_unstemmed |
Improving industrial security device detection with convolutional neural networks |
| title_sort |
Improving industrial security device detection with convolutional neural networks |
| author |
Iparraguirre-Villanueva, Orlando |
| author_facet |
Iparraguirre-Villanueva, Orlando Gonzales-Huaman, Josemaria Machuca-Solano, Jose Ruiz-Alvarado, John |
| author_role |
author |
| author2 |
Gonzales-Huaman, Josemaria Machuca-Solano, Jose Ruiz-Alvarado, John |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Gonzales-Huaman, Josemaria Machuca-Solano, Jose Ruiz-Alvarado, John |
| dc.subject.es_PE.fl_str_mv |
CNNs Machine vision Security Sensing YOLOv5 |
| topic |
CNNs Machine vision Security Sensing YOLOv5 https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Employee safety is paramount in the manufacturing industry to ensure their well-being and protection. Technological advancements, particularly convolutional neural networks (CNN), have significantly enhanced this safety aspect by facilitating object detection and recognition. This project aims to utilize CNN technology to detect personal protective equipment and implement a safety implement detection system. The CNN architecture with the YOLOv5x model was employed to train a dataset. Dataset videos were converted into frames, with resolution scale adjustments made during the data collection phase. Subsequently, the dataset was labeled, underwent data cleaning, and label and bounding box revisions. The results revealed significant metrics in safety equipment detection in industrial settings. Helmet precision reached 91%, with a recall of 74%. Goggles achieved 85% precision and an 87% recall. Mask absence recorded 92% precision and an 89% recall. The YOLOv5x model exhibited commendable performance, showcasing its robust ability to accurately locate and detect objects. In conclusion, the utilization of a CNN-based safety equipment detection system, such as YOLOv5x, has yielded substantial improvements in both speed and accuracy. These findings lay a solid foundation for future industrial security applications aimed at safeguarding workers, fostering responsible workplace behavior, and optimizing the utilization of information technology resources. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-23T21:03:29Z |
| dc.date.available.none.fl_str_mv |
2024-05-23T21:03:29Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/3190 |
| dc.identifier.journal.es_PE.fl_str_mv |
Indonesian Journal of Electrical Engineering and Computer Science |
| dc.identifier.doi.es_PE.fl_str_mv |
https://doi.org/10.3991/ijep.v14i3.47323 |
| url |
https://hdl.handle.net/20.500.13067/3190 https://doi.org/10.3991/ijep.v14i3.47323 |
| identifier_str_mv |
Indonesian Journal of Electrical Engineering and Computer Science |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science (IAES) |
| dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
| instname_str |
Universidad Autónoma del Perú |
| instacron_str |
AUTONOMA |
| institution |
AUTONOMA |
| reponame_str |
AUTONOMA-Institucional |
| collection |
AUTONOMA-Institucional |
| dc.source.volume.es_PE.fl_str_mv |
34 |
| dc.source.issue.es_PE.fl_str_mv |
3 |
| dc.source.beginpage.es_PE.fl_str_mv |
1935 |
| dc.source.endpage.es_PE.fl_str_mv |
1943 |
| bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/1/27.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/3/27.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/4/27.pdf.jpg |
| bitstream.checksum.fl_str_mv |
23168041f32ec308aebfa94fa0793886 9243398ff393db1861c890baeaeee5f9 185fbf85a75e6c5a67db0a0ec05a9db6 3f1fefb4a3d0614af500e11cb4cb479b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
| repository.mail.fl_str_mv |
repositorio@autonoma.pe |
| _version_ |
1835915461940740096 |
| score |
13.987529 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).