Improving industrial security device detection with convolutional neural networks

Descripción del Articulo

Employee safety is paramount in the manufacturing industry to ensure their well-being and protection. Technological advancements, particularly convolutional neural networks (CNN), have significantly enhanced this safety aspect by facilitating object detection and recognition. This project aims to ut...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Gonzales-Huaman, Josemaria, Machuca-Solano, Jose, Ruiz-Alvarado, John
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/3190
Enlace del recurso:https://hdl.handle.net/20.500.13067/3190
https://doi.org/10.3991/ijep.v14i3.47323
Nivel de acceso:acceso abierto
Materia:CNNs
Machine vision
Security
Sensing
YOLOv5
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_49ca7224930c1bc4c8e4b6b32d563abc
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/3190
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Iparraguirre-Villanueva, OrlandoGonzales-Huaman, JosemariaMachuca-Solano, JoseRuiz-Alvarado, John2024-05-23T21:03:29Z2024-05-23T21:03:29Z2023https://hdl.handle.net/20.500.13067/3190Indonesian Journal of Electrical Engineering and Computer Sciencehttps://doi.org/10.3991/ijep.v14i3.47323Employee safety is paramount in the manufacturing industry to ensure their well-being and protection. Technological advancements, particularly convolutional neural networks (CNN), have significantly enhanced this safety aspect by facilitating object detection and recognition. This project aims to utilize CNN technology to detect personal protective equipment and implement a safety implement detection system. The CNN architecture with the YOLOv5x model was employed to train a dataset. Dataset videos were converted into frames, with resolution scale adjustments made during the data collection phase. Subsequently, the dataset was labeled, underwent data cleaning, and label and bounding box revisions. The results revealed significant metrics in safety equipment detection in industrial settings. Helmet precision reached 91%, with a recall of 74%. Goggles achieved 85% precision and an 87% recall. Mask absence recorded 92% precision and an 89% recall. The YOLOv5x model exhibited commendable performance, showcasing its robust ability to accurately locate and detect objects. In conclusion, the utilization of a CNN-based safety equipment detection system, such as YOLOv5x, has yielded substantial improvements in both speed and accuracy. These findings lay a solid foundation for future industrial security applications aimed at safeguarding workers, fostering responsible workplace behavior, and optimizing the utilization of information technology resources.application/pdfengInstitute of Advanced Engineering and Science (IAES)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/CNNsMachine visionSecuritySensingYOLOv5https://purl.org/pe-repo/ocde/ford#2.02.04Improving industrial security device detection with convolutional neural networksinfo:eu-repo/semantics/article34319351943reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL27.pdf27.pdfArtículoapplication/pdf608495http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/1/27.pdf23168041f32ec308aebfa94fa0793886MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT27.pdf.txt27.pdf.txtExtracted texttext/plain38184http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/3/27.pdf.txt185fbf85a75e6c5a67db0a0ec05a9db6MD53THUMBNAIL27.pdf.jpg27.pdf.jpgGenerated Thumbnailimage/jpeg6562http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/4/27.pdf.jpg3f1fefb4a3d0614af500e11cb4cb479bMD5420.500.13067/3190oai:repositorio.autonoma.edu.pe:20.500.13067/31902025-01-06 16:19:25.604Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Improving industrial security device detection with convolutional neural networks
title Improving industrial security device detection with convolutional neural networks
spellingShingle Improving industrial security device detection with convolutional neural networks
Iparraguirre-Villanueva, Orlando
CNNs
Machine vision
Security
Sensing
YOLOv5
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Improving industrial security device detection with convolutional neural networks
title_full Improving industrial security device detection with convolutional neural networks
title_fullStr Improving industrial security device detection with convolutional neural networks
title_full_unstemmed Improving industrial security device detection with convolutional neural networks
title_sort Improving industrial security device detection with convolutional neural networks
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Gonzales-Huaman, Josemaria
Machuca-Solano, Jose
Ruiz-Alvarado, John
author_role author
author2 Gonzales-Huaman, Josemaria
Machuca-Solano, Jose
Ruiz-Alvarado, John
author2_role author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Gonzales-Huaman, Josemaria
Machuca-Solano, Jose
Ruiz-Alvarado, John
dc.subject.es_PE.fl_str_mv CNNs
Machine vision
Security
Sensing
YOLOv5
topic CNNs
Machine vision
Security
Sensing
YOLOv5
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Employee safety is paramount in the manufacturing industry to ensure their well-being and protection. Technological advancements, particularly convolutional neural networks (CNN), have significantly enhanced this safety aspect by facilitating object detection and recognition. This project aims to utilize CNN technology to detect personal protective equipment and implement a safety implement detection system. The CNN architecture with the YOLOv5x model was employed to train a dataset. Dataset videos were converted into frames, with resolution scale adjustments made during the data collection phase. Subsequently, the dataset was labeled, underwent data cleaning, and label and bounding box revisions. The results revealed significant metrics in safety equipment detection in industrial settings. Helmet precision reached 91%, with a recall of 74%. Goggles achieved 85% precision and an 87% recall. Mask absence recorded 92% precision and an 89% recall. The YOLOv5x model exhibited commendable performance, showcasing its robust ability to accurately locate and detect objects. In conclusion, the utilization of a CNN-based safety equipment detection system, such as YOLOv5x, has yielded substantial improvements in both speed and accuracy. These findings lay a solid foundation for future industrial security applications aimed at safeguarding workers, fostering responsible workplace behavior, and optimizing the utilization of information technology resources.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-05-23T21:03:29Z
dc.date.available.none.fl_str_mv 2024-05-23T21:03:29Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/3190
dc.identifier.journal.es_PE.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science
dc.identifier.doi.es_PE.fl_str_mv https://doi.org/10.3991/ijep.v14i3.47323
url https://hdl.handle.net/20.500.13067/3190
https://doi.org/10.3991/ijep.v14i3.47323
identifier_str_mv Indonesian Journal of Electrical Engineering and Computer Science
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science (IAES)
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 34
dc.source.issue.es_PE.fl_str_mv 3
dc.source.beginpage.es_PE.fl_str_mv 1935
dc.source.endpage.es_PE.fl_str_mv 1943
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/1/27.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/3/27.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3190/4/27.pdf.jpg
bitstream.checksum.fl_str_mv 23168041f32ec308aebfa94fa0793886
9243398ff393db1861c890baeaeee5f9
185fbf85a75e6c5a67db0a0ec05a9db6
3f1fefb4a3d0614af500e11cb4cb479b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915461940740096
score 13.987529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).