PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning

Descripción del Articulo

In this paper, a surveillance system expected to run in the prospective technology called Internet of Bio-Nano Things is presented. For this end the theory of Cognitive Radio as well as the Machine Learning criteria based on the hypothesis of Tom Mitchell are employed. In addition the Feynman's...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1706
Enlace del recurso:https://hdl.handle.net/20.500.13067/1706
https://doi.org/10.1109/CBMS49503.2020.00026
Nivel de acceso:acceso restringido
Materia:Sugar
Pollution measurement
Sensors
Cognitive radio
Task analysis
Surveillance
Internet
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_321bf7ac410ef25da8c1505769e0e157
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/1706
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Nieto-Chaupis, Huber2022-03-03T14:44:58Z2022-03-03T14:44:58Z2020-09-01Nieto-Chaupis, H. (2020, July). PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning. In 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) (pp. 99-103). IEEE.978-1-7281-9429-52372-9198https://hdl.handle.net/20.500.13067/17062020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)https://doi.org/10.1109/CBMS49503.2020.00026In this paper, a surveillance system expected to run in the prospective technology called Internet of Bio-Nano Things is presented. For this end the theory of Cognitive Radio as well as the Machine Learning criteria based on the hypothesis of Tom Mitchell are employed. In addition the Feynman's propagator model is also used. Essentially this paper focuses on the events where diabetes patients might have initialized a stroke event, so that the necessity to make the best decision is critic in order to guarantee a fast recover in the short term. Therefore this paper is focused on the following clinic variables: (i) cardiac pulse, (ii) blood pressure, (iii) glucose, and (iv) cholesterol. When all these variables are fully interconnected among them the full response might very encouraging in those cases where critic and non-critic patients might to anticipate unexpected events against their wellness in the shortest times in comparison with current systems.application/pdfengInstitute of Electrical and Electronics EngineersPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA99103reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMASugarPollution measurementSensorsCognitive radioTask analysisSurveillanceInternethttps://purl.org/pe-repo/ocde/ford#2.02.04PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learninginfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85091177006&doi=10.1109%2fCBMS49503.2020.00026&partnerID=40LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdfPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdfVer fuenteapplication/pdf98795http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/3/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf17e4f99430a3a53db93354728392571cMD53TEXTPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdf.txtPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdf.txtExtracted texttext/plain586http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/4/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf.txt70a5430bcc7cf167fb44e6d0cb16ccebMD54THUMBNAILPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdf.jpgPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdf.jpgGenerated Thumbnailimage/jpeg5825http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/5/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf.jpg966c36df17ce7ef0d665a0c8c9072243MD5520.500.13067/1706oai:repositorio.autonoma.edu.pe:20.500.13067/17062022-03-04 03:00:22.18Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe
dc.title.es_PE.fl_str_mv PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning
title PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning
spellingShingle PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning
Nieto-Chaupis, Huber
Sugar
Pollution measurement
Sensors
Cognitive radio
Task analysis
Surveillance
Internet
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning
title_full PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning
title_fullStr PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning
title_full_unstemmed PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning
title_sort PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning
author Nieto-Chaupis, Huber
author_facet Nieto-Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto-Chaupis, Huber
dc.subject.es_PE.fl_str_mv Sugar
Pollution measurement
Sensors
Cognitive radio
Task analysis
Surveillance
Internet
topic Sugar
Pollution measurement
Sensors
Cognitive radio
Task analysis
Surveillance
Internet
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description In this paper, a surveillance system expected to run in the prospective technology called Internet of Bio-Nano Things is presented. For this end the theory of Cognitive Radio as well as the Machine Learning criteria based on the hypothesis of Tom Mitchell are employed. In addition the Feynman's propagator model is also used. Essentially this paper focuses on the events where diabetes patients might have initialized a stroke event, so that the necessity to make the best decision is critic in order to guarantee a fast recover in the short term. Therefore this paper is focused on the following clinic variables: (i) cardiac pulse, (ii) blood pressure, (iii) glucose, and (iv) cholesterol. When all these variables are fully interconnected among them the full response might very encouraging in those cases where critic and non-critic patients might to anticipate unexpected events against their wellness in the shortest times in comparison with current systems.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2022-03-03T14:44:58Z
dc.date.available.none.fl_str_mv 2022-03-03T14:44:58Z
dc.date.issued.fl_str_mv 2020-09-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Nieto-Chaupis, H. (2020, July). PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning. In 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) (pp. 99-103). IEEE.
dc.identifier.isbn.none.fl_str_mv 978-1-7281-9429-5
dc.identifier.issn.none.fl_str_mv 2372-9198
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/1706
dc.identifier.journal.es_PE.fl_str_mv 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/CBMS49503.2020.00026
identifier_str_mv Nieto-Chaupis, H. (2020, July). PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning. In 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) (pp. 99-103). IEEE.
978-1-7281-9429-5
2372-9198
2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)
url https://hdl.handle.net/20.500.13067/1706
https://doi.org/10.1109/CBMS49503.2020.00026
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091177006&doi=10.1109%2fCBMS49503.2020.00026&partnerID=40
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Electrical and Electronics Engineers
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.beginpage.es_PE.fl_str_mv 99
dc.source.endpage.es_PE.fl_str_mv 103
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/3/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/4/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/5/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf.jpg
bitstream.checksum.fl_str_mv 9243398ff393db1861c890baeaeee5f9
17e4f99430a3a53db93354728392571c
70a5430bcc7cf167fb44e6d0cb16cceb
966c36df17ce7ef0d665a0c8c9072243
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1774399985926799360
score 13.887768
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).