PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning
Descripción del Articulo
In this paper, a surveillance system expected to run in the prospective technology called Internet of Bio-Nano Things is presented. For this end the theory of Cognitive Radio as well as the Machine Learning criteria based on the hypothesis of Tom Mitchell are employed. In addition the Feynman's...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1706 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1706 https://doi.org/10.1109/CBMS49503.2020.00026 |
Nivel de acceso: | acceso restringido |
Materia: | Sugar Pollution measurement Sensors Cognitive radio Task analysis Surveillance Internet https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_321bf7ac410ef25da8c1505769e0e157 |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1706 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Nieto-Chaupis, Huber2022-03-03T14:44:58Z2022-03-03T14:44:58Z2020-09-01Nieto-Chaupis, H. (2020, July). PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning. In 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) (pp. 99-103). IEEE.978-1-7281-9429-52372-9198https://hdl.handle.net/20.500.13067/17062020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)https://doi.org/10.1109/CBMS49503.2020.00026In this paper, a surveillance system expected to run in the prospective technology called Internet of Bio-Nano Things is presented. For this end the theory of Cognitive Radio as well as the Machine Learning criteria based on the hypothesis of Tom Mitchell are employed. In addition the Feynman's propagator model is also used. Essentially this paper focuses on the events where diabetes patients might have initialized a stroke event, so that the necessity to make the best decision is critic in order to guarantee a fast recover in the short term. Therefore this paper is focused on the following clinic variables: (i) cardiac pulse, (ii) blood pressure, (iii) glucose, and (iv) cholesterol. When all these variables are fully interconnected among them the full response might very encouraging in those cases where critic and non-critic patients might to anticipate unexpected events against their wellness in the shortest times in comparison with current systems.application/pdfengInstitute of Electrical and Electronics EngineersPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA99103reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMASugarPollution measurementSensorsCognitive radioTask analysisSurveillanceInternethttps://purl.org/pe-repo/ocde/ford#2.02.04PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learninginfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85091177006&doi=10.1109%2fCBMS49503.2020.00026&partnerID=40LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdfPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdfVer fuenteapplication/pdf98795http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/3/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf17e4f99430a3a53db93354728392571cMD53TEXTPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdf.txtPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdf.txtExtracted texttext/plain586http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/4/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf.txt70a5430bcc7cf167fb44e6d0cb16ccebMD54THUMBNAILPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdf.jpgPROSISY PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning.pdf.jpgGenerated Thumbnailimage/jpeg5825http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/5/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf.jpg966c36df17ce7ef0d665a0c8c9072243MD5520.500.13067/1706oai:repositorio.autonoma.edu.pe:20.500.13067/17062022-03-04 03:00:22.18Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
dc.title.es_PE.fl_str_mv |
PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning |
title |
PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning |
spellingShingle |
PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning Nieto-Chaupis, Huber Sugar Pollution measurement Sensors Cognitive radio Task analysis Surveillance Internet https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning |
title_full |
PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning |
title_fullStr |
PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning |
title_full_unstemmed |
PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning |
title_sort |
PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning |
author |
Nieto-Chaupis, Huber |
author_facet |
Nieto-Chaupis, Huber |
author_role |
author |
dc.contributor.author.fl_str_mv |
Nieto-Chaupis, Huber |
dc.subject.es_PE.fl_str_mv |
Sugar Pollution measurement Sensors Cognitive radio Task analysis Surveillance Internet |
topic |
Sugar Pollution measurement Sensors Cognitive radio Task analysis Surveillance Internet https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
In this paper, a surveillance system expected to run in the prospective technology called Internet of Bio-Nano Things is presented. For this end the theory of Cognitive Radio as well as the Machine Learning criteria based on the hypothesis of Tom Mitchell are employed. In addition the Feynman's propagator model is also used. Essentially this paper focuses on the events where diabetes patients might have initialized a stroke event, so that the necessity to make the best decision is critic in order to guarantee a fast recover in the short term. Therefore this paper is focused on the following clinic variables: (i) cardiac pulse, (ii) blood pressure, (iii) glucose, and (iv) cholesterol. When all these variables are fully interconnected among them the full response might very encouraging in those cases where critic and non-critic patients might to anticipate unexpected events against their wellness in the shortest times in comparison with current systems. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2022-03-03T14:44:58Z |
dc.date.available.none.fl_str_mv |
2022-03-03T14:44:58Z |
dc.date.issued.fl_str_mv |
2020-09-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Nieto-Chaupis, H. (2020, July). PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning. In 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) (pp. 99-103). IEEE. |
dc.identifier.isbn.none.fl_str_mv |
978-1-7281-9429-5 |
dc.identifier.issn.none.fl_str_mv |
2372-9198 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1706 |
dc.identifier.journal.es_PE.fl_str_mv |
2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/CBMS49503.2020.00026 |
identifier_str_mv |
Nieto-Chaupis, H. (2020, July). PROSISY: PRospective Stroke Identification SYstem Based on Cognitive Radio Theory and Machine Learning. In 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) (pp. 99-103). IEEE. 978-1-7281-9429-5 2372-9198 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) |
url |
https://hdl.handle.net/20.500.13067/1706 https://doi.org/10.1109/CBMS49503.2020.00026 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091177006&doi=10.1109%2fCBMS49503.2020.00026&partnerID=40 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.beginpage.es_PE.fl_str_mv |
99 |
dc.source.endpage.es_PE.fl_str_mv |
103 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/3/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/4/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1706/5/PROSISY%20PRospective%20Stroke%20Identification%20SYstem%20Based%20on%20Cognitive%20Radio%20Theory%20and%20Machine%20Learning.pdf.jpg |
bitstream.checksum.fl_str_mv |
9243398ff393db1861c890baeaeee5f9 17e4f99430a3a53db93354728392571c 70a5430bcc7cf167fb44e6d0cb16cceb 966c36df17ce7ef0d665a0c8c9072243 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1774399985926799360 |
score |
13.887768 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).