Theory of machine learning based on nonrelativistic quantum mechanics
Descripción del Articulo
El documento a texto completo no se encuentra disponible en el Repositorio de la Universidad Autónoma del Perú debido a las restricciones de la casa editorial donde se encuentra publicada.
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1586 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1586 https://doi.org/10.1142/S0219749921410045 |
Nivel de acceso: | acceso restringido |
Materia: | Dirac brackets Machine learning Quantum mechanics Tom Mitchell https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_074932e815a451eb7c373cc9f99e7a0c |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1586 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Nieto-Chaupis, Huber2022-01-25T21:35:16Z2022-01-25T21:35:16Z20212197499https://hdl.handle.net/20.500.13067/1586International Journal of Quantum Informationhttps://doi.org/10.1142/S0219749921410045El documento a texto completo no se encuentra disponible en el Repositorio de la Universidad Autónoma del Perú debido a las restricciones de la casa editorial donde se encuentra publicada.The goal of this paper is the presentation of the elementary procedures that normally are done in nonrelativistic Quantum Mechanics in terms of the principles of Machine Learning. In essence, this paper discusses Mitchell's criteria, whose block fundamental dictates that the universal evolution of any system is composed by three fundamental steps: (i) Task, (ii) Performance and (iii) Experience. In this paper, the quantum mechanics formalism reflected on the usage of evolution operator and Green's function are assumed to be part of mechanisms that are inherently engaged to the Machine Learning philosophy. The action for measuring observables through experiments and the intrinsic apparition of statistical or systematic errors are discussed in terms of "quantum learning". © 2021 World Scientific Publishing Company.application/pdfspaWorld ScientificPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA194reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMADirac bracketsMachine learningQuantum mechanicsTom Mitchellhttps://purl.org/pe-repo/ocde/ford#2.02.04Theory of machine learning based on nonrelativistic quantum mechanicsinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85108575681&doi=10.1142%2fS0219749921410045&partnerID=40&md5=ad8550ea02b8341f3f1f8d8f23089616ORIGINALTheory of machine learning based on nonrelativistic quantum mechanics.pdfTheory of machine learning based on nonrelativistic quantum mechanics.pdfVer fuenteapplication/pdf98978http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/3/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdfb2b873580978a22effde201a76608c33MD53TEXTTheory of machine learning based on nonrelativistic quantum mechanics.pdf.txtTheory of machine learning based on nonrelativistic quantum mechanics.pdf.txtExtracted texttext/plain486http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/4/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdf.txt9a51e13a30604054f255016445c86728MD54THUMBNAILTheory of machine learning based on nonrelativistic quantum mechanics.pdf.jpgTheory of machine learning based on nonrelativistic quantum mechanics.pdf.jpgGenerated Thumbnailimage/jpeg5557http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/5/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdf.jpge184c19a95be1fdd7bf15a83cdc02f75MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/1586oai:repositorio.autonoma.edu.pe:20.500.13067/15862022-01-26 03:00:24.805Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
dc.title.es_PE.fl_str_mv |
Theory of machine learning based on nonrelativistic quantum mechanics |
title |
Theory of machine learning based on nonrelativistic quantum mechanics |
spellingShingle |
Theory of machine learning based on nonrelativistic quantum mechanics Nieto-Chaupis, Huber Dirac brackets Machine learning Quantum mechanics Tom Mitchell https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Theory of machine learning based on nonrelativistic quantum mechanics |
title_full |
Theory of machine learning based on nonrelativistic quantum mechanics |
title_fullStr |
Theory of machine learning based on nonrelativistic quantum mechanics |
title_full_unstemmed |
Theory of machine learning based on nonrelativistic quantum mechanics |
title_sort |
Theory of machine learning based on nonrelativistic quantum mechanics |
author |
Nieto-Chaupis, Huber |
author_facet |
Nieto-Chaupis, Huber |
author_role |
author |
dc.contributor.author.fl_str_mv |
Nieto-Chaupis, Huber |
dc.subject.es_PE.fl_str_mv |
Dirac brackets Machine learning Quantum mechanics Tom Mitchell |
topic |
Dirac brackets Machine learning Quantum mechanics Tom Mitchell https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
El documento a texto completo no se encuentra disponible en el Repositorio de la Universidad Autónoma del Perú debido a las restricciones de la casa editorial donde se encuentra publicada. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-01-25T21:35:16Z |
dc.date.available.none.fl_str_mv |
2022-01-25T21:35:16Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
2197499 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1586 |
dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Quantum Information |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1142/S0219749921410045 |
identifier_str_mv |
2197499 International Journal of Quantum Information |
url |
https://hdl.handle.net/20.500.13067/1586 https://doi.org/10.1142/S0219749921410045 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108575681&doi=10.1142%2fS0219749921410045&partnerID=40&md5=ad8550ea02b8341f3f1f8d8f23089616 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
World Scientific |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
19 |
dc.source.issue.es_PE.fl_str_mv |
4 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/3/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/4/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/5/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/2/license.txt |
bitstream.checksum.fl_str_mv |
b2b873580978a22effde201a76608c33 9a51e13a30604054f255016445c86728 e184c19a95be1fdd7bf15a83cdc02f75 9243398ff393db1861c890baeaeee5f9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1774399971518316544 |
score |
13.949927 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).