Theory of machine learning based on nonrelativistic quantum mechanics

Descripción del Articulo

El documento a texto completo no se encuentra disponible en el Repositorio de la Universidad Autónoma del Perú debido a las restricciones de la casa editorial donde se encuentra publicada.
Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1586
Enlace del recurso:https://hdl.handle.net/20.500.13067/1586
https://doi.org/10.1142/S0219749921410045
Nivel de acceso:acceso restringido
Materia:Dirac brackets
Machine learning
Quantum mechanics
Tom Mitchell
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_074932e815a451eb7c373cc9f99e7a0c
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/1586
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Nieto-Chaupis, Huber2022-01-25T21:35:16Z2022-01-25T21:35:16Z20212197499https://hdl.handle.net/20.500.13067/1586International Journal of Quantum Informationhttps://doi.org/10.1142/S0219749921410045El documento a texto completo no se encuentra disponible en el Repositorio de la Universidad Autónoma del Perú debido a las restricciones de la casa editorial donde se encuentra publicada.The goal of this paper is the presentation of the elementary procedures that normally are done in nonrelativistic Quantum Mechanics in terms of the principles of Machine Learning. In essence, this paper discusses Mitchell's criteria, whose block fundamental dictates that the universal evolution of any system is composed by three fundamental steps: (i) Task, (ii) Performance and (iii) Experience. In this paper, the quantum mechanics formalism reflected on the usage of evolution operator and Green's function are assumed to be part of mechanisms that are inherently engaged to the Machine Learning philosophy. The action for measuring observables through experiments and the intrinsic apparition of statistical or systematic errors are discussed in terms of "quantum learning". © 2021 World Scientific Publishing Company.application/pdfspaWorld ScientificPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA194reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMADirac bracketsMachine learningQuantum mechanicsTom Mitchellhttps://purl.org/pe-repo/ocde/ford#2.02.04Theory of machine learning based on nonrelativistic quantum mechanicsinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85108575681&doi=10.1142%2fS0219749921410045&partnerID=40&md5=ad8550ea02b8341f3f1f8d8f23089616ORIGINALTheory of machine learning based on nonrelativistic quantum mechanics.pdfTheory of machine learning based on nonrelativistic quantum mechanics.pdfVer fuenteapplication/pdf98978http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/3/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdfb2b873580978a22effde201a76608c33MD53TEXTTheory of machine learning based on nonrelativistic quantum mechanics.pdf.txtTheory of machine learning based on nonrelativistic quantum mechanics.pdf.txtExtracted texttext/plain486http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/4/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdf.txt9a51e13a30604054f255016445c86728MD54THUMBNAILTheory of machine learning based on nonrelativistic quantum mechanics.pdf.jpgTheory of machine learning based on nonrelativistic quantum mechanics.pdf.jpgGenerated Thumbnailimage/jpeg5557http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/5/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdf.jpge184c19a95be1fdd7bf15a83cdc02f75MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/1586oai:repositorio.autonoma.edu.pe:20.500.13067/15862022-01-26 03:00:24.805Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe
dc.title.es_PE.fl_str_mv Theory of machine learning based on nonrelativistic quantum mechanics
title Theory of machine learning based on nonrelativistic quantum mechanics
spellingShingle Theory of machine learning based on nonrelativistic quantum mechanics
Nieto-Chaupis, Huber
Dirac brackets
Machine learning
Quantum mechanics
Tom Mitchell
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Theory of machine learning based on nonrelativistic quantum mechanics
title_full Theory of machine learning based on nonrelativistic quantum mechanics
title_fullStr Theory of machine learning based on nonrelativistic quantum mechanics
title_full_unstemmed Theory of machine learning based on nonrelativistic quantum mechanics
title_sort Theory of machine learning based on nonrelativistic quantum mechanics
author Nieto-Chaupis, Huber
author_facet Nieto-Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto-Chaupis, Huber
dc.subject.es_PE.fl_str_mv Dirac brackets
Machine learning
Quantum mechanics
Tom Mitchell
topic Dirac brackets
Machine learning
Quantum mechanics
Tom Mitchell
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description El documento a texto completo no se encuentra disponible en el Repositorio de la Universidad Autónoma del Perú debido a las restricciones de la casa editorial donde se encuentra publicada.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2022-01-25T21:35:16Z
dc.date.available.none.fl_str_mv 2022-01-25T21:35:16Z
dc.date.issued.fl_str_mv 2021
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 2197499
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/1586
dc.identifier.journal.es_PE.fl_str_mv International Journal of Quantum Information
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1142/S0219749921410045
identifier_str_mv 2197499
International Journal of Quantum Information
url https://hdl.handle.net/20.500.13067/1586
https://doi.org/10.1142/S0219749921410045
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.url.es_PE.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108575681&doi=10.1142%2fS0219749921410045&partnerID=40&md5=ad8550ea02b8341f3f1f8d8f23089616
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv World Scientific
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 19
dc.source.issue.es_PE.fl_str_mv 4
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/3/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/4/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/5/Theory%20of%20machine%20learning%20based%20on%20nonrelativistic%20quantum%20mechanics.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1586/2/license.txt
bitstream.checksum.fl_str_mv b2b873580978a22effde201a76608c33
9a51e13a30604054f255016445c86728
e184c19a95be1fdd7bf15a83cdc02f75
9243398ff393db1861c890baeaeee5f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1774399971518316544
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).