Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation
Descripción del Articulo
Environmental contamination by heavy metals represents a serious problem for humans and the ecosystem due to its degree of toxicity, which is why it is necessary to have treatment alternatives for its disposal. The bioremediation process of the lead (II) and cadmium (II) metals was carried out; thro...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Universidad César Vallejo |
| Repositorio: | Revista UCV-HACER |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.pkp.sfu.ca:article/2629 |
| Enlace del recurso: | http://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/2629 |
| Nivel de acceso: | acceso abierto |
| id |
2414-8695_28980a8051f6b8a080a5b28772bb8695 |
|---|---|
| oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/2629 |
| network_acronym_str |
2414-8695 |
| repository_id_str |
|
| network_name_str |
Revista UCV-HACER |
| dc.title.none.fl_str_mv |
Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation Aislamiento de cepas fúngicas de una poza de relaves para la biorremediación de plomo y cadmio |
| title |
Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation |
| spellingShingle |
Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation APAZA-AQUINO, Hugo |
| title_short |
Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation |
| title_full |
Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation |
| title_fullStr |
Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation |
| title_full_unstemmed |
Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation |
| title_sort |
Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation |
| dc.creator.none.fl_str_mv |
APAZA-AQUINO, Hugo VALDERRAMA VALENCIA, María del Rosario |
| author |
APAZA-AQUINO, Hugo |
| author_facet |
APAZA-AQUINO, Hugo VALDERRAMA VALENCIA, María del Rosario |
| author_role |
author |
| author2 |
VALDERRAMA VALENCIA, María del Rosario |
| author2_role |
author |
| dc.description.none.fl_txt_mv |
Environmental contamination by heavy metals represents a serious problem for humans and the ecosystem due to its degree of toxicity, which is why it is necessary to have treatment alternatives for its disposal. The bioremediation process of the lead (II) and cadmium (II) metals was carried out; through the use of native fungi isolated from the oxidation pool of the metallurgical laboratory of the National University of San Agustín, Arequipa -Peru; in Sabouraud dextrose and potato dextrose broth culture media, the fungal strains were cultivated to carry out the lead (II) and cadmium (II) removal tests, a batch system was used and the removal percentage was determined. Rhizopus spand Aspergillus nigerwere isolated and identified; in the removal tests it was determined that Rhizopus spwas the strain that most removed the lead (II) in 86.39 %, cadmium (II) in 69.23 % and the mixture in 74.82 %. On the other hand Aspergillus nigerremoves lead (II) in 74.19 %, cadmium (II) in 44.72 % and the mixture in 66.90 % and for the biomass consortium Aspergillus niger-Rhizopus spremoves lead (II) in 84.17 %, cadmium (II) in 43.42 %, and the mixture at 53.43 %. Rhizopus spand Aspergillus nigerfungal biomass efficiently removes lead (II) and cadmium (II) metals, representing a potential alternative for bioremediation processes. Keywords: Aspergillus niger, biomass, heavy metals, removal, Rhizopus sp. La contaminación ambiental por metales pesados representa un problema grave para el ser humano y el ecosistema por su grado de toxicidad, es por ello que es necesario tener alternativas de tratamiento para su disposición. Se realizó el proceso de biorremediación de los metales plomo (II) y cadmio (II); mediante el empleo de hongos nativos aislados de la poza de oxidación del laboratorio metalúrgico de la Universidad Nacional de San Agustín, Arequipa –Perú; en medios de cultivo Sabouraud dextrosa y caldo papa dextrosa se cultivaron las cepas fúngicas para realizar los ensayos de remoción de plomo (II) y cadmio (II), se trabajó en sistema batch y se determinó el porcentaje de remoción. Se logró aislar e identificar a Rhizopus sp y Aspergillus niger; en los ensayos de remoción se determinó que Rhizopus spfue la cepa que más removió plomo (II) en 86,39 %, cadmio (II) en 69,23 % y la mezcla en 74,82 %. Por otra parte Aspergillus nigerremueve plomo (II) en 74,19 %, cadmio (II) en 44,72 % y la mezcla en 66,90 % y para el consorcio de las biomasas Aspergillus niger-Rhizopus spremueve plomo (II) en 84,17 %, cadmio (II) en 43,42 %, y la mezcla en 53,43 %. La biomasa fungal de Rhizopus spy Aspergillus nigerremueven eficientemente los metales de plomo (II) y cadmio (II), representando una alternativa potencial para procesos de biorremediación. Palabras clave:Aspergillus niger, biomasa, metales pesados, remoción, Rhizopus sp. |
| description |
Environmental contamination by heavy metals represents a serious problem for humans and the ecosystem due to its degree of toxicity, which is why it is necessary to have treatment alternatives for its disposal. The bioremediation process of the lead (II) and cadmium (II) metals was carried out; through the use of native fungi isolated from the oxidation pool of the metallurgical laboratory of the National University of San Agustín, Arequipa -Peru; in Sabouraud dextrose and potato dextrose broth culture media, the fungal strains were cultivated to carry out the lead (II) and cadmium (II) removal tests, a batch system was used and the removal percentage was determined. Rhizopus spand Aspergillus nigerwere isolated and identified; in the removal tests it was determined that Rhizopus spwas the strain that most removed the lead (II) in 86.39 %, cadmium (II) in 69.23 % and the mixture in 74.82 %. On the other hand Aspergillus nigerremoves lead (II) in 74.19 %, cadmium (II) in 44.72 % and the mixture in 66.90 % and for the biomass consortium Aspergillus niger-Rhizopus spremoves lead (II) in 84.17 %, cadmium (II) in 43.42 %, and the mixture at 53.43 %. Rhizopus spand Aspergillus nigerfungal biomass efficiently removes lead (II) and cadmium (II) metals, representing a potential alternative for bioremediation processes. Keywords: Aspergillus niger, biomass, heavy metals, removal, Rhizopus sp. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-10-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/2629 10.18050/ucv-hacer.v9i4.2629 |
| url |
http://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/2629 |
| identifier_str_mv |
10.18050/ucv-hacer.v9i4.2629 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
http://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/2629/2138 /*ref*/Acosta, I., Moctezuma-Zárate, M. de G., Cárdenas, J. F., & Gutiérrez, C. (2007). Bioadsorción de cadmio (II) en solución acuosa por biomasas fúngicas. Información Tecnológica, 18(1), 9–14. https://doi.org/10.4067/S0718-07642007000100003 Albert, Q., Leleyter, L., Lemoine, M., Heutte, N., Rioult, J. P., Sage, L., Baraud, F., & Garon, D. (2018). Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere, 196, 386–392. https://doi.org/10.1016/j.chemosphere.2017.12.156 Amini, M., & Younesi, H. (2009). Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of Aspergillus niger: Application of response surface methodology to the optimization of process parameters. Clean Soil Air Water, 37(10), 776–786. https://doi.org/10.1002/clen.200900090 Beltrán-Pineda, M. E., & Gómez-Rodríguez, A. M. (2016). Biorremediación de metales pesados cadmio (Cd), cromo (Cr) y mercurio (Hg), mecanismos bioquímicos e ingeniería genética: una revisión. Revista Facultad de Ciencias Básicas, 12(2), 172–197. https://doi.org/10.18359/rfcb.2027 Bhateria, R., & Dhaka, R. (2019). Optimization and statistical modelling of cadmium biosorption process in aqueous medium by Aspergillus niger using response surface methodology and principal component analysis. Ecological Engineering, 135(September 2018), 127–138. https://doi.org/10.1016/j.ecoleng.2019.05.010 Cabral, M., Toure, A., Garçon, G., Diop, C., Bouhsina, S., Dewaele, D., Cazier, F., Courcot, D., Tall-Dia, A., Shirali, P., Diouf, A., Fall, M., & Verdin, A. (2015). Effects of environmental cadmium and lead exposure on adults neighboring a discharge: Evidences of adverse health effects. Environmental Pollution, 206, 247–255. https://doi.org/10.1016/j.envpol.2015.06.032 Choe, S. I., & Sheppard, D. C. (2016). Bioremediation of Arsenic Using an Aspergillus System. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 267–274). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63505-1.00034-8 Espinoza-Sánchez, M. A., Arévalo-Niño, K., Quintero-Zapata, I., Castro-González, I., & Almaguer-Cantú, V. (2019). Cr(VI) adsorption from aqueous solution by fungal bioremediation based using Rhizopus sp. Journal of Environmental Management, 251(February), 109595. https://doi.org/10.1016/j.jenvman.2019.109595 Guevara, M., Urcia, F., & Casquero, J. (2007). Manual de procedimientos y técnicas de laboratorio para la identificación de los principales hongos oportunistas causantes de micosis humanas. http://www.ins.gob.pe/insvirtual/images/otrpubs/pdf/Manual_HONGOS[1].pdf Khan, S., Umer, A. S. M., & Rehman, W. (2013). Biosorption of Lead by Rhizopus stolonifer Biomass : Role of Functional Groups. Journal of Ecophysiology and Occupational Health, 13(3/4), 21–28. https://doi.org/10.18311/jeoh/2013/1715 Londoño-Franco, L. F., Londoño-Muñoz, P. T., & Muñoz-Garcia, F. G. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnologa En El Sector Agropecuario y Agroindustrial, 14(2), 145–153. https://doi.org/10.18684/bsaa(14)145-153 Moreno, E., Argota, G., Alfaro, R., Aparicio, M., Atencio, S., & Goyzueta, G. (2017). Determinación interactiva de metales totales en las aguas de la bahía interior del Lago Titicaca- Puno Perú. Revista de Investigaciones Altoandinas, 19(2), 125–134. https://doi.org/10.18271/ria.2017.271 Moreno, E., Argota, G., Alfaro, R., Aparicio, M., Atencio, S., & Goyzueta, G. (2018). Cuantificación de metales en sedimentos superficiales de la bahía interior, lago Titicaca-Perú. Revista de Investigaciones Altoandinas, 20(1), 9–18. https://doi.org/10.18271/ria.2018.326 Mukherjee, A. (2016). Role of Aspergillus in Bioremediation Process. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 209–214). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63505-1.00017-8 Naeimi, B., Foroutan, R., Ahmadi, B., Sadeghzadeh, F., & Ramavandi, B. (2018). Pb(II) and Cd(II) removal from aqueous solution, shipyard wastewater, and landfill leachate by modified rhizopus oryzae biomass. Materials Research Express, 5(4), 045501. https://doi.org/10.1088/2053-1591/aab81b. Oladipo, O. G., Awotoye, O. O., Olayinka, A., Bezuidenhout, C. C., & Maboeta, M. S. (2018). Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49(1), 29–37. https://doi.org/10.1016/j.bjm.2017.06.003 Pal, S. K., & Das, T. K. (2005). Biochemical characterization of N-methyl N′-nitro-N-nitrosoguanidine- induced cadmium resistant mutants of Aspergillus niger. Journal of Biosciences, 30(5), 639–646. https://doi.org/https://doi.org/10.1007/BF02703564 Pérez Bou, L., Salgado Bernal, I., Larrea Duarte, C., Martínez Sardiñas, A., Cruz Arias, M. E., & Carballo Valdés, M. E. (2018). Biosorción microbiana de metales pesados : características del proceso. Revista Cubana de Ciencias Biológicas, 6(1), 1–12. http://www.rccb.uh.cu/index.php/RCCB/article/view/216 Qayyum, S., Khan, I., Maqbool, F., Zhao, Y., Gu, Q., & Peng, C. (2016). Isolation and characterization of heavy metal resistant fungal isolates from industrial soil in China. Pakistan Journal of Zoology, 48(5), 1241–1247. https://www.researchgate.net/publication/297732291_Isolation_and_characterization_of_heavy_metal_resistant_fungal_isolates_from_Industrial_soil_China Sanchez, J. G., Marrugo, J. L., & Urango, I. D. (2014). Biosorción simultanea de plomo y cadmio en solución acuosa por biomasa de hongos Penicillium sp. Temas Agrarios, 19(1), 63–72. https://doi.org/https://doi.org/10.21897/rta.v19i1.725 Shakya, M., Sharma, P., Meryem, S. S., Mahmood, Q., & Kumar, A. (2016). Heavy Metal Removal from Industrial Wastewater Using Fungi: Uptake Mechanism and Biochemical Aspects. Journal of Environmental Engineering, 142(9). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000983 Singh, R. K., Tripathi, R., Ranjan, A., & Srivastava, A. K. (2020). Fungi as potential candidates for bioremediation. In Abatement of Environmental Pollutants (pp. 177–191). Elsevier Inc. https://doi.org/10.1016/b978-0-12-818095-2.00009-6 Vala, A. K., & Sutariya, V. (2012). Trivalent arsenic tolerance and accumulation in two facultative marine fungi. Jundishapur Journal of Microbiology, 5(4), 542–545. https://doi.org/10.5812/jjm.3383 Verma, S., & Kuila, A. (2019). Bioremediation of heavy metals by microbial process. Environmental Technology and Innovation, 14, 100369. https://doi.org/10.1016/j.eti.2019.100369 Villanueva Vega, J. A. (2015). Determinación de la biorremoción de plomo (Pb+2) mediante hongos y microalgas nativas aisladas de efluentes industriales empacadas en un sistema en serie de agitación continua [Universidad Nacional de San Agustín]. http://repositorio.unsa.edu.pe/handle/UNSA/450 Zhao, M. hua, Zhang, C. sheng, Zeng, G. ming, Huang, D. lian, & Cheng, M. (2016). Toxicity and bioaccumulation of heavy metals in Phanerochaete chrysosporium. Transactions of Nonferrous Metals Society of China, 26(5), 1410–1418. https://doi.org/10.1016/S1003-6326(16)64245-0 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2020 Hugo APAZA-AQUINO, María del Rosario VALDERRAMA VALENCIA http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2020 Hugo APAZA-AQUINO, María del Rosario VALDERRAMA VALENCIA http://creativecommons.org/licenses/by-nc/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad César Vallejo Campus Chiclayo |
| publisher.none.fl_str_mv |
Universidad César Vallejo Campus Chiclayo |
| dc.source.none.fl_str_mv |
UCV HACER; Vol. 9 Núm. 4 (2020): Octubre-Diciembre; 47-54 UCV-HACER; Vol. 9 Núm. 4 (2020): Octubre-Diciembre; 47-54 2414-8695 2305-8552 10.18050/ucv-hacer.v9i4 reponame:Revista UCV-HACER instname:Universidad César Vallejo instacron:UCV |
| reponame_str |
Revista UCV-HACER |
| collection |
Revista UCV-HACER |
| instname_str |
Universidad César Vallejo |
| instacron_str |
UCV |
| institution |
UCV |
| repository.name.fl_str_mv |
-
|
| repository.mail.fl_str_mv |
mail@mail.com |
| _version_ |
1701653000216379392 |
| spelling |
Isolation of fungal strains from a tailings pond for lead and cadmium bioremediationAislamiento de cepas fúngicas de una poza de relaves para la biorremediación de plomo y cadmioAPAZA-AQUINO, HugoVALDERRAMA VALENCIA, María del RosarioEnvironmental contamination by heavy metals represents a serious problem for humans and the ecosystem due to its degree of toxicity, which is why it is necessary to have treatment alternatives for its disposal. The bioremediation process of the lead (II) and cadmium (II) metals was carried out; through the use of native fungi isolated from the oxidation pool of the metallurgical laboratory of the National University of San Agustín, Arequipa -Peru; in Sabouraud dextrose and potato dextrose broth culture media, the fungal strains were cultivated to carry out the lead (II) and cadmium (II) removal tests, a batch system was used and the removal percentage was determined. Rhizopus spand Aspergillus nigerwere isolated and identified; in the removal tests it was determined that Rhizopus spwas the strain that most removed the lead (II) in 86.39 %, cadmium (II) in 69.23 % and the mixture in 74.82 %. On the other hand Aspergillus nigerremoves lead (II) in 74.19 %, cadmium (II) in 44.72 % and the mixture in 66.90 % and for the biomass consortium Aspergillus niger-Rhizopus spremoves lead (II) in 84.17 %, cadmium (II) in 43.42 %, and the mixture at 53.43 %. Rhizopus spand Aspergillus nigerfungal biomass efficiently removes lead (II) and cadmium (II) metals, representing a potential alternative for bioremediation processes. Keywords: Aspergillus niger, biomass, heavy metals, removal, Rhizopus sp.La contaminación ambiental por metales pesados representa un problema grave para el ser humano y el ecosistema por su grado de toxicidad, es por ello que es necesario tener alternativas de tratamiento para su disposición. Se realizó el proceso de biorremediación de los metales plomo (II) y cadmio (II); mediante el empleo de hongos nativos aislados de la poza de oxidación del laboratorio metalúrgico de la Universidad Nacional de San Agustín, Arequipa –Perú; en medios de cultivo Sabouraud dextrosa y caldo papa dextrosa se cultivaron las cepas fúngicas para realizar los ensayos de remoción de plomo (II) y cadmio (II), se trabajó en sistema batch y se determinó el porcentaje de remoción. Se logró aislar e identificar a Rhizopus sp y Aspergillus niger; en los ensayos de remoción se determinó que Rhizopus spfue la cepa que más removió plomo (II) en 86,39 %, cadmio (II) en 69,23 % y la mezcla en 74,82 %. Por otra parte Aspergillus nigerremueve plomo (II) en 74,19 %, cadmio (II) en 44,72 % y la mezcla en 66,90 % y para el consorcio de las biomasas Aspergillus niger-Rhizopus spremueve plomo (II) en 84,17 %, cadmio (II) en 43,42 %, y la mezcla en 53,43 %. La biomasa fungal de Rhizopus spy Aspergillus nigerremueven eficientemente los metales de plomo (II) y cadmio (II), representando una alternativa potencial para procesos de biorremediación. Palabras clave:Aspergillus niger, biomasa, metales pesados, remoción, Rhizopus sp.Universidad César Vallejo Campus Chiclayo2020-10-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/262910.18050/ucv-hacer.v9i4.2629UCV HACER; Vol. 9 Núm. 4 (2020): Octubre-Diciembre; 47-54UCV-HACER; Vol. 9 Núm. 4 (2020): Octubre-Diciembre; 47-542414-86952305-855210.18050/ucv-hacer.v9i4reponame:Revista UCV-HACERinstname:Universidad César Vallejoinstacron:UCVspahttp://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/2629/2138/*ref*/Acosta, I., Moctezuma-Zárate, M. de G., Cárdenas, J. F., & Gutiérrez, C. (2007). Bioadsorción de cadmio (II) en solución acuosa por biomasas fúngicas. Información Tecnológica, 18(1), 9–14. https://doi.org/10.4067/S0718-07642007000100003 Albert, Q., Leleyter, L., Lemoine, M., Heutte, N., Rioult, J. P., Sage, L., Baraud, F., & Garon, D. (2018). Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere, 196, 386–392. https://doi.org/10.1016/j.chemosphere.2017.12.156 Amini, M., & Younesi, H. (2009). Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of Aspergillus niger: Application of response surface methodology to the optimization of process parameters. Clean Soil Air Water, 37(10), 776–786. https://doi.org/10.1002/clen.200900090 Beltrán-Pineda, M. E., & Gómez-Rodríguez, A. M. (2016). Biorremediación de metales pesados cadmio (Cd), cromo (Cr) y mercurio (Hg), mecanismos bioquímicos e ingeniería genética: una revisión. Revista Facultad de Ciencias Básicas, 12(2), 172–197. https://doi.org/10.18359/rfcb.2027 Bhateria, R., & Dhaka, R. (2019). Optimization and statistical modelling of cadmium biosorption process in aqueous medium by Aspergillus niger using response surface methodology and principal component analysis. Ecological Engineering, 135(September 2018), 127–138. https://doi.org/10.1016/j.ecoleng.2019.05.010 Cabral, M., Toure, A., Garçon, G., Diop, C., Bouhsina, S., Dewaele, D., Cazier, F., Courcot, D., Tall-Dia, A., Shirali, P., Diouf, A., Fall, M., & Verdin, A. (2015). Effects of environmental cadmium and lead exposure on adults neighboring a discharge: Evidences of adverse health effects. Environmental Pollution, 206, 247–255. https://doi.org/10.1016/j.envpol.2015.06.032 Choe, S. I., & Sheppard, D. C. (2016). Bioremediation of Arsenic Using an Aspergillus System. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 267–274). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63505-1.00034-8 Espinoza-Sánchez, M. A., Arévalo-Niño, K., Quintero-Zapata, I., Castro-González, I., & Almaguer-Cantú, V. (2019). Cr(VI) adsorption from aqueous solution by fungal bioremediation based using Rhizopus sp. Journal of Environmental Management, 251(February), 109595. https://doi.org/10.1016/j.jenvman.2019.109595 Guevara, M., Urcia, F., & Casquero, J. (2007). Manual de procedimientos y técnicas de laboratorio para la identificación de los principales hongos oportunistas causantes de micosis humanas. http://www.ins.gob.pe/insvirtual/images/otrpubs/pdf/Manual_HONGOS[1].pdf Khan, S., Umer, A. S. M., & Rehman, W. (2013). Biosorption of Lead by Rhizopus stolonifer Biomass : Role of Functional Groups. Journal of Ecophysiology and Occupational Health, 13(3/4), 21–28. https://doi.org/10.18311/jeoh/2013/1715 Londoño-Franco, L. F., Londoño-Muñoz, P. T., & Muñoz-Garcia, F. G. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnologa En El Sector Agropecuario y Agroindustrial, 14(2), 145–153. https://doi.org/10.18684/bsaa(14)145-153 Moreno, E., Argota, G., Alfaro, R., Aparicio, M., Atencio, S., & Goyzueta, G. (2017). Determinación interactiva de metales totales en las aguas de la bahía interior del Lago Titicaca- Puno Perú. Revista de Investigaciones Altoandinas, 19(2), 125–134. https://doi.org/10.18271/ria.2017.271 Moreno, E., Argota, G., Alfaro, R., Aparicio, M., Atencio, S., & Goyzueta, G. (2018). Cuantificación de metales en sedimentos superficiales de la bahía interior, lago Titicaca-Perú. Revista de Investigaciones Altoandinas, 20(1), 9–18. https://doi.org/10.18271/ria.2018.326 Mukherjee, A. (2016). Role of Aspergillus in Bioremediation Process. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 209–214). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63505-1.00017-8 Naeimi, B., Foroutan, R., Ahmadi, B., Sadeghzadeh, F., & Ramavandi, B. (2018). Pb(II) and Cd(II) removal from aqueous solution, shipyard wastewater, and landfill leachate by modified rhizopus oryzae biomass. Materials Research Express, 5(4), 045501. https://doi.org/10.1088/2053-1591/aab81b. Oladipo, O. G., Awotoye, O. O., Olayinka, A., Bezuidenhout, C. C., & Maboeta, M. S. (2018). Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49(1), 29–37. https://doi.org/10.1016/j.bjm.2017.06.003 Pal, S. K., & Das, T. K. (2005). Biochemical characterization of N-methyl N′-nitro-N-nitrosoguanidine- induced cadmium resistant mutants of Aspergillus niger. Journal of Biosciences, 30(5), 639–646. https://doi.org/https://doi.org/10.1007/BF02703564 Pérez Bou, L., Salgado Bernal, I., Larrea Duarte, C., Martínez Sardiñas, A., Cruz Arias, M. E., & Carballo Valdés, M. E. (2018). Biosorción microbiana de metales pesados : características del proceso. Revista Cubana de Ciencias Biológicas, 6(1), 1–12. http://www.rccb.uh.cu/index.php/RCCB/article/view/216 Qayyum, S., Khan, I., Maqbool, F., Zhao, Y., Gu, Q., & Peng, C. (2016). Isolation and characterization of heavy metal resistant fungal isolates from industrial soil in China. Pakistan Journal of Zoology, 48(5), 1241–1247. https://www.researchgate.net/publication/297732291_Isolation_and_characterization_of_heavy_metal_resistant_fungal_isolates_from_Industrial_soil_China Sanchez, J. G., Marrugo, J. L., & Urango, I. D. (2014). Biosorción simultanea de plomo y cadmio en solución acuosa por biomasa de hongos Penicillium sp. Temas Agrarios, 19(1), 63–72. https://doi.org/https://doi.org/10.21897/rta.v19i1.725 Shakya, M., Sharma, P., Meryem, S. S., Mahmood, Q., & Kumar, A. (2016). Heavy Metal Removal from Industrial Wastewater Using Fungi: Uptake Mechanism and Biochemical Aspects. Journal of Environmental Engineering, 142(9). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000983 Singh, R. K., Tripathi, R., Ranjan, A., & Srivastava, A. K. (2020). Fungi as potential candidates for bioremediation. In Abatement of Environmental Pollutants (pp. 177–191). Elsevier Inc. https://doi.org/10.1016/b978-0-12-818095-2.00009-6 Vala, A. K., & Sutariya, V. (2012). Trivalent arsenic tolerance and accumulation in two facultative marine fungi. Jundishapur Journal of Microbiology, 5(4), 542–545. https://doi.org/10.5812/jjm.3383 Verma, S., & Kuila, A. (2019). Bioremediation of heavy metals by microbial process. Environmental Technology and Innovation, 14, 100369. https://doi.org/10.1016/j.eti.2019.100369 Villanueva Vega, J. A. (2015). Determinación de la biorremoción de plomo (Pb+2) mediante hongos y microalgas nativas aisladas de efluentes industriales empacadas en un sistema en serie de agitación continua [Universidad Nacional de San Agustín]. http://repositorio.unsa.edu.pe/handle/UNSA/450 Zhao, M. hua, Zhang, C. sheng, Zeng, G. ming, Huang, D. lian, & Cheng, M. (2016). Toxicity and bioaccumulation of heavy metals in Phanerochaete chrysosporium. Transactions of Nonferrous Metals Society of China, 26(5), 1410–1418. https://doi.org/10.1016/S1003-6326(16)64245-0Derechos de autor 2020 Hugo APAZA-AQUINO, María del Rosario VALDERRAMA VALENCIAhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccess2021-06-04T16:05:42Zmail@mail.com - |
| score |
13.945474 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).