Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation

Descripción del Articulo

Environmental contamination by heavy metals represents a serious problem for humans and the ecosystem due to its degree of toxicity, which is why it is necessary to have treatment alternatives for its disposal. The bioremediation process of the lead (II) and cadmium (II) metals was carried out; thro...

Descripción completa

Detalles Bibliográficos
Autores: APAZA-AQUINO, Hugo, VALDERRAMA VALENCIA, María del Rosario
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad César Vallejo
Repositorio:Revista UCV-HACER
Lenguaje:español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/2629
Enlace del recurso:http://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/2629
Nivel de acceso:acceso abierto
id 2414-8695_28980a8051f6b8a080a5b28772bb8695
oai_identifier_str oai:ojs.pkp.sfu.ca:article/2629
network_acronym_str 2414-8695
repository_id_str
network_name_str Revista UCV-HACER
dc.title.none.fl_str_mv Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation
Aislamiento de cepas fúngicas de una poza de relaves para la biorremediación de plomo y cadmio
title Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation
spellingShingle Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation
APAZA-AQUINO, Hugo
title_short Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation
title_full Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation
title_fullStr Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation
title_full_unstemmed Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation
title_sort Isolation of fungal strains from a tailings pond for lead and cadmium bioremediation
dc.creator.none.fl_str_mv APAZA-AQUINO, Hugo
VALDERRAMA VALENCIA, María del Rosario
author APAZA-AQUINO, Hugo
author_facet APAZA-AQUINO, Hugo
VALDERRAMA VALENCIA, María del Rosario
author_role author
author2 VALDERRAMA VALENCIA, María del Rosario
author2_role author
dc.description.none.fl_txt_mv Environmental contamination by heavy metals represents a serious problem for humans and the ecosystem due to its degree of toxicity, which is why it is necessary to have treatment alternatives for its disposal. The bioremediation process of the lead (II) and cadmium (II) metals was carried out; through the use of native fungi isolated from the oxidation pool of the metallurgical laboratory of the National University of San Agustín, Arequipa -Peru; in Sabouraud dextrose and potato dextrose broth culture media, the fungal strains were cultivated to carry out the lead (II) and cadmium (II) removal tests, a batch system was used and the removal percentage was determined. Rhizopus spand Aspergillus nigerwere isolated and identified; in the removal tests it was determined that Rhizopus spwas the strain that most removed the lead (II) in 86.39 %, cadmium (II) in 69.23 % and the mixture in 74.82 %. On the other hand Aspergillus nigerremoves lead (II) in 74.19 %, cadmium (II) in 44.72 % and the mixture in 66.90 % and for the biomass consortium Aspergillus niger-Rhizopus spremoves lead (II) in 84.17 %, cadmium (II) in 43.42 %, and the mixture at 53.43 %. Rhizopus spand Aspergillus nigerfungal biomass efficiently removes lead (II) and cadmium (II) metals, representing a potential alternative for bioremediation processes. Keywords: Aspergillus niger, biomass, heavy metals, removal, Rhizopus sp.
La contaminación ambiental por metales pesados representa un problema grave para el ser humano y el ecosistema por su grado de toxicidad, es por ello que es necesario tener alternativas de tratamiento para su disposición. Se realizó el proceso de biorremediación de los metales plomo (II) y cadmio (II); mediante el empleo de hongos nativos aislados de la poza de oxidación del laboratorio metalúrgico de la Universidad Nacional de San Agustín, Arequipa –Perú; en medios de cultivo Sabouraud dextrosa y caldo papa dextrosa se cultivaron las cepas fúngicas para realizar los ensayos de remoción de plomo (II) y cadmio (II), se trabajó en sistema batch y se determinó el porcentaje de remoción. Se logró aislar e identificar a Rhizopus sp y Aspergillus niger; en los ensayos de remoción se determinó que Rhizopus spfue la cepa que más removió plomo (II) en 86,39 %, cadmio (II) en 69,23 % y la mezcla en 74,82 %. Por otra parte Aspergillus nigerremueve plomo (II) en 74,19 %, cadmio (II) en 44,72 % y la mezcla en 66,90 % y para el consorcio de las biomasas Aspergillus niger-Rhizopus spremueve plomo (II) en 84,17 %, cadmio (II) en 43,42 %, y la mezcla en 53,43 %. La biomasa fungal de Rhizopus spy Aspergillus nigerremueven eficientemente los metales de plomo (II) y cadmio (II), representando una alternativa potencial para procesos de biorremediación. Palabras clave:Aspergillus niger, biomasa, metales pesados, remoción, Rhizopus sp.
description Environmental contamination by heavy metals represents a serious problem for humans and the ecosystem due to its degree of toxicity, which is why it is necessary to have treatment alternatives for its disposal. The bioremediation process of the lead (II) and cadmium (II) metals was carried out; through the use of native fungi isolated from the oxidation pool of the metallurgical laboratory of the National University of San Agustín, Arequipa -Peru; in Sabouraud dextrose and potato dextrose broth culture media, the fungal strains were cultivated to carry out the lead (II) and cadmium (II) removal tests, a batch system was used and the removal percentage was determined. Rhizopus spand Aspergillus nigerwere isolated and identified; in the removal tests it was determined that Rhizopus spwas the strain that most removed the lead (II) in 86.39 %, cadmium (II) in 69.23 % and the mixture in 74.82 %. On the other hand Aspergillus nigerremoves lead (II) in 74.19 %, cadmium (II) in 44.72 % and the mixture in 66.90 % and for the biomass consortium Aspergillus niger-Rhizopus spremoves lead (II) in 84.17 %, cadmium (II) in 43.42 %, and the mixture at 53.43 %. Rhizopus spand Aspergillus nigerfungal biomass efficiently removes lead (II) and cadmium (II) metals, representing a potential alternative for bioremediation processes. Keywords: Aspergillus niger, biomass, heavy metals, removal, Rhizopus sp.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/2629
10.18050/ucv-hacer.v9i4.2629
url http://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/2629
identifier_str_mv 10.18050/ucv-hacer.v9i4.2629
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/2629/2138
/*ref*/Acosta, I., Moctezuma-Zárate, M. de G., Cárdenas, J. F., & Gutiérrez, C. (2007). Bioadsorción de cadmio (II) en solución acuosa por biomasas fúngicas. Información Tecnológica, 18(1), 9–14. https://doi.org/10.4067/S0718-07642007000100003 Albert, Q., Leleyter, L., Lemoine, M., Heutte, N., Rioult, J. P., Sage, L., Baraud, F., & Garon, D. (2018). Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere, 196, 386–392. https://doi.org/10.1016/j.chemosphere.2017.12.156 Amini, M., & Younesi, H. (2009). Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of Aspergillus niger: Application of response surface methodology to the optimization of process parameters. Clean Soil Air Water, 37(10), 776–786. https://doi.org/10.1002/clen.200900090 Beltrán-Pineda, M. E., & Gómez-Rodríguez, A. M. (2016). Biorremediación de metales pesados cadmio (Cd), cromo (Cr) y mercurio (Hg), mecanismos bioquímicos e ingeniería genética: una revisión. Revista Facultad de Ciencias Básicas, 12(2), 172–197. https://doi.org/10.18359/rfcb.2027 Bhateria, R., & Dhaka, R. (2019). Optimization and statistical modelling of cadmium biosorption process in aqueous medium by Aspergillus niger using response surface methodology and principal component analysis. Ecological Engineering, 135(September 2018), 127–138. https://doi.org/10.1016/j.ecoleng.2019.05.010 Cabral, M., Toure, A., Garçon, G., Diop, C., Bouhsina, S., Dewaele, D., Cazier, F., Courcot, D., Tall-Dia, A., Shirali, P., Diouf, A., Fall, M., & Verdin, A. (2015). Effects of environmental cadmium and lead exposure on adults neighboring a discharge: Evidences of adverse health effects. Environmental Pollution, 206, 247–255. https://doi.org/10.1016/j.envpol.2015.06.032 Choe, S. I., & Sheppard, D. C. (2016). Bioremediation of Arsenic Using an Aspergillus System. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 267–274). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63505-1.00034-8 Espinoza-Sánchez, M. A., Arévalo-Niño, K., Quintero-Zapata, I., Castro-González, I., & Almaguer-Cantú, V. (2019). Cr(VI) adsorption from aqueous solution by fungal bioremediation based using Rhizopus sp. Journal of Environmental Management, 251(February), 109595. https://doi.org/10.1016/j.jenvman.2019.109595 Guevara, M., Urcia, F., & Casquero, J. (2007). Manual de procedimientos y técnicas de laboratorio para la identificación de los principales hongos oportunistas causantes de micosis humanas. http://www.ins.gob.pe/insvirtual/images/otrpubs/pdf/Manual_HONGOS[1].pdf Khan, S., Umer, A. S. M., & Rehman, W. (2013). Biosorption of Lead by Rhizopus stolonifer Biomass : Role of Functional Groups. Journal of Ecophysiology and Occupational Health, 13(3/4), 21–28. https://doi.org/10.18311/jeoh/2013/1715 Londoño-Franco, L. F., Londoño-Muñoz, P. T., & Muñoz-Garcia, F. G. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnologa En El Sector Agropecuario y Agroindustrial, 14(2), 145–153. https://doi.org/10.18684/bsaa(14)145-153 Moreno, E., Argota, G., Alfaro, R., Aparicio, M., Atencio, S., & Goyzueta, G. (2017). Determinación interactiva de metales totales en las aguas de la bahía interior del Lago Titicaca- Puno Perú. Revista de Investigaciones Altoandinas, 19(2), 125–134. https://doi.org/10.18271/ria.2017.271 Moreno, E., Argota, G., Alfaro, R., Aparicio, M., Atencio, S., & Goyzueta, G. (2018). Cuantificación de metales en sedimentos superficiales de la bahía interior, lago Titicaca-Perú. Revista de Investigaciones Altoandinas, 20(1), 9–18. https://doi.org/10.18271/ria.2018.326 Mukherjee, A. (2016). Role of Aspergillus in Bioremediation Process. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 209–214). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63505-1.00017-8 Naeimi, B., Foroutan, R., Ahmadi, B., Sadeghzadeh, F., & Ramavandi, B. (2018). Pb(II) and Cd(II) removal from aqueous solution, shipyard wastewater, and landfill leachate by modified rhizopus oryzae biomass. Materials Research Express, 5(4), 045501. https://doi.org/10.1088/2053-1591/aab81b. Oladipo, O. G., Awotoye, O. O., Olayinka, A., Bezuidenhout, C. C., & Maboeta, M. S. (2018). Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49(1), 29–37. https://doi.org/10.1016/j.bjm.2017.06.003 Pal, S. K., & Das, T. K. (2005). Biochemical characterization of N-methyl N′-nitro-N-nitrosoguanidine- induced cadmium resistant mutants of Aspergillus niger. Journal of Biosciences, 30(5), 639–646. https://doi.org/https://doi.org/10.1007/BF02703564 Pérez Bou, L., Salgado Bernal, I., Larrea Duarte, C., Martínez Sardiñas, A., Cruz Arias, M. E., & Carballo Valdés, M. E. (2018). Biosorción microbiana de metales pesados : características del proceso. Revista Cubana de Ciencias Biológicas, 6(1), 1–12. http://www.rccb.uh.cu/index.php/RCCB/article/view/216 Qayyum, S., Khan, I., Maqbool, F., Zhao, Y., Gu, Q., & Peng, C. (2016). Isolation and characterization of heavy metal resistant fungal isolates from industrial soil in China. Pakistan Journal of Zoology, 48(5), 1241–1247. https://www.researchgate.net/publication/297732291_Isolation_and_characterization_of_heavy_metal_resistant_fungal_isolates_from_Industrial_soil_China Sanchez, J. G., Marrugo, J. L., & Urango, I. D. (2014). Biosorción simultanea de plomo y cadmio en solución acuosa por biomasa de hongos Penicillium sp. Temas Agrarios, 19(1), 63–72. https://doi.org/https://doi.org/10.21897/rta.v19i1.725 Shakya, M., Sharma, P., Meryem, S. S., Mahmood, Q., & Kumar, A. (2016). Heavy Metal Removal from Industrial Wastewater Using Fungi: Uptake Mechanism and Biochemical Aspects. Journal of Environmental Engineering, 142(9). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000983 Singh, R. K., Tripathi, R., Ranjan, A., & Srivastava, A. K. (2020). Fungi as potential candidates for bioremediation. In Abatement of Environmental Pollutants (pp. 177–191). Elsevier Inc. https://doi.org/10.1016/b978-0-12-818095-2.00009-6 Vala, A. K., & Sutariya, V. (2012). Trivalent arsenic tolerance and accumulation in two facultative marine fungi. Jundishapur Journal of Microbiology, 5(4), 542–545. https://doi.org/10.5812/jjm.3383 Verma, S., & Kuila, A. (2019). Bioremediation of heavy metals by microbial process. Environmental Technology and Innovation, 14, 100369. https://doi.org/10.1016/j.eti.2019.100369 Villanueva Vega, J. A. (2015). Determinación de la biorremoción de plomo (Pb+2) mediante hongos y microalgas nativas aisladas de efluentes industriales empacadas en un sistema en serie de agitación continua [Universidad Nacional de San Agustín]. http://repositorio.unsa.edu.pe/handle/UNSA/450 Zhao, M. hua, Zhang, C. sheng, Zeng, G. ming, Huang, D. lian, & Cheng, M. (2016). Toxicity and bioaccumulation of heavy metals in Phanerochaete chrysosporium. Transactions of Nonferrous Metals Society of China, 26(5), 1410–1418. https://doi.org/10.1016/S1003-6326(16)64245-0
dc.rights.none.fl_str_mv Derechos de autor 2020 Hugo APAZA-AQUINO, María del Rosario VALDERRAMA VALENCIA
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2020 Hugo APAZA-AQUINO, María del Rosario VALDERRAMA VALENCIA
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad César Vallejo Campus Chiclayo
publisher.none.fl_str_mv Universidad César Vallejo Campus Chiclayo
dc.source.none.fl_str_mv UCV HACER; Vol. 9 Núm. 4 (2020): Octubre-Diciembre; 47-54
UCV-HACER; Vol. 9 Núm. 4 (2020): Octubre-Diciembre; 47-54
2414-8695
2305-8552
10.18050/ucv-hacer.v9i4
reponame:Revista UCV-HACER
instname:Universidad César Vallejo
instacron:UCV
reponame_str Revista UCV-HACER
collection Revista UCV-HACER
instname_str Universidad César Vallejo
instacron_str UCV
institution UCV
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1701653000216379392
spelling Isolation of fungal strains from a tailings pond for lead and cadmium bioremediationAislamiento de cepas fúngicas de una poza de relaves para la biorremediación de plomo y cadmioAPAZA-AQUINO, HugoVALDERRAMA VALENCIA, María del RosarioEnvironmental contamination by heavy metals represents a serious problem for humans and the ecosystem due to its degree of toxicity, which is why it is necessary to have treatment alternatives for its disposal. The bioremediation process of the lead (II) and cadmium (II) metals was carried out; through the use of native fungi isolated from the oxidation pool of the metallurgical laboratory of the National University of San Agustín, Arequipa -Peru; in Sabouraud dextrose and potato dextrose broth culture media, the fungal strains were cultivated to carry out the lead (II) and cadmium (II) removal tests, a batch system was used and the removal percentage was determined. Rhizopus spand Aspergillus nigerwere isolated and identified; in the removal tests it was determined that Rhizopus spwas the strain that most removed the lead (II) in 86.39 %, cadmium (II) in 69.23 % and the mixture in 74.82 %. On the other hand Aspergillus nigerremoves lead (II) in 74.19 %, cadmium (II) in 44.72 % and the mixture in 66.90 % and for the biomass consortium Aspergillus niger-Rhizopus spremoves lead (II) in 84.17 %, cadmium (II) in 43.42 %, and the mixture at 53.43 %. Rhizopus spand Aspergillus nigerfungal biomass efficiently removes lead (II) and cadmium (II) metals, representing a potential alternative for bioremediation processes. Keywords: Aspergillus niger, biomass, heavy metals, removal, Rhizopus sp.La contaminación ambiental por metales pesados representa un problema grave para el ser humano y el ecosistema por su grado de toxicidad, es por ello que es necesario tener alternativas de tratamiento para su disposición. Se realizó el proceso de biorremediación de los metales plomo (II) y cadmio (II); mediante el empleo de hongos nativos aislados de la poza de oxidación del laboratorio metalúrgico de la Universidad Nacional de San Agustín, Arequipa –Perú; en medios de cultivo Sabouraud dextrosa y caldo papa dextrosa se cultivaron las cepas fúngicas para realizar los ensayos de remoción de plomo (II) y cadmio (II), se trabajó en sistema batch y se determinó el porcentaje de remoción. Se logró aislar e identificar a Rhizopus sp y Aspergillus niger; en los ensayos de remoción se determinó que Rhizopus spfue la cepa que más removió plomo (II) en 86,39 %, cadmio (II) en 69,23 % y la mezcla en 74,82 %. Por otra parte Aspergillus nigerremueve plomo (II) en 74,19 %, cadmio (II) en 44,72 % y la mezcla en 66,90 % y para el consorcio de las biomasas Aspergillus niger-Rhizopus spremueve plomo (II) en 84,17 %, cadmio (II) en 43,42 %, y la mezcla en 53,43 %. La biomasa fungal de Rhizopus spy Aspergillus nigerremueven eficientemente los metales de plomo (II) y cadmio (II), representando una alternativa potencial para procesos de biorremediación. Palabras clave:Aspergillus niger, biomasa, metales pesados, remoción, Rhizopus sp.Universidad César Vallejo Campus Chiclayo2020-10-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/262910.18050/ucv-hacer.v9i4.2629UCV HACER; Vol. 9 Núm. 4 (2020): Octubre-Diciembre; 47-54UCV-HACER; Vol. 9 Núm. 4 (2020): Octubre-Diciembre; 47-542414-86952305-855210.18050/ucv-hacer.v9i4reponame:Revista UCV-HACERinstname:Universidad César Vallejoinstacron:UCVspahttp://revistas.ucv.edu.pe/index.php/UCV-HACER/article/view/2629/2138/*ref*/Acosta, I., Moctezuma-Zárate, M. de G., Cárdenas, J. F., & Gutiérrez, C. (2007). Bioadsorción de cadmio (II) en solución acuosa por biomasas fúngicas. Información Tecnológica, 18(1), 9–14. https://doi.org/10.4067/S0718-07642007000100003 Albert, Q., Leleyter, L., Lemoine, M., Heutte, N., Rioult, J. P., Sage, L., Baraud, F., & Garon, D. (2018). Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere, 196, 386–392. https://doi.org/10.1016/j.chemosphere.2017.12.156 Amini, M., & Younesi, H. (2009). Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of Aspergillus niger: Application of response surface methodology to the optimization of process parameters. Clean Soil Air Water, 37(10), 776–786. https://doi.org/10.1002/clen.200900090 Beltrán-Pineda, M. E., & Gómez-Rodríguez, A. M. (2016). Biorremediación de metales pesados cadmio (Cd), cromo (Cr) y mercurio (Hg), mecanismos bioquímicos e ingeniería genética: una revisión. Revista Facultad de Ciencias Básicas, 12(2), 172–197. https://doi.org/10.18359/rfcb.2027 Bhateria, R., & Dhaka, R. (2019). Optimization and statistical modelling of cadmium biosorption process in aqueous medium by Aspergillus niger using response surface methodology and principal component analysis. Ecological Engineering, 135(September 2018), 127–138. https://doi.org/10.1016/j.ecoleng.2019.05.010 Cabral, M., Toure, A., Garçon, G., Diop, C., Bouhsina, S., Dewaele, D., Cazier, F., Courcot, D., Tall-Dia, A., Shirali, P., Diouf, A., Fall, M., & Verdin, A. (2015). Effects of environmental cadmium and lead exposure on adults neighboring a discharge: Evidences of adverse health effects. Environmental Pollution, 206, 247–255. https://doi.org/10.1016/j.envpol.2015.06.032 Choe, S. I., & Sheppard, D. C. (2016). Bioremediation of Arsenic Using an Aspergillus System. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 267–274). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63505-1.00034-8 Espinoza-Sánchez, M. A., Arévalo-Niño, K., Quintero-Zapata, I., Castro-González, I., & Almaguer-Cantú, V. (2019). Cr(VI) adsorption from aqueous solution by fungal bioremediation based using Rhizopus sp. Journal of Environmental Management, 251(February), 109595. https://doi.org/10.1016/j.jenvman.2019.109595 Guevara, M., Urcia, F., & Casquero, J. (2007). Manual de procedimientos y técnicas de laboratorio para la identificación de los principales hongos oportunistas causantes de micosis humanas. http://www.ins.gob.pe/insvirtual/images/otrpubs/pdf/Manual_HONGOS[1].pdf Khan, S., Umer, A. S. M., & Rehman, W. (2013). Biosorption of Lead by Rhizopus stolonifer Biomass : Role of Functional Groups. Journal of Ecophysiology and Occupational Health, 13(3/4), 21–28. https://doi.org/10.18311/jeoh/2013/1715 Londoño-Franco, L. F., Londoño-Muñoz, P. T., & Muñoz-Garcia, F. G. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnologa En El Sector Agropecuario y Agroindustrial, 14(2), 145–153. https://doi.org/10.18684/bsaa(14)145-153 Moreno, E., Argota, G., Alfaro, R., Aparicio, M., Atencio, S., & Goyzueta, G. (2017). Determinación interactiva de metales totales en las aguas de la bahía interior del Lago Titicaca- Puno Perú. Revista de Investigaciones Altoandinas, 19(2), 125–134. https://doi.org/10.18271/ria.2017.271 Moreno, E., Argota, G., Alfaro, R., Aparicio, M., Atencio, S., & Goyzueta, G. (2018). Cuantificación de metales en sedimentos superficiales de la bahía interior, lago Titicaca-Perú. Revista de Investigaciones Altoandinas, 20(1), 9–18. https://doi.org/10.18271/ria.2018.326 Mukherjee, A. (2016). Role of Aspergillus in Bioremediation Process. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 209–214). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63505-1.00017-8 Naeimi, B., Foroutan, R., Ahmadi, B., Sadeghzadeh, F., & Ramavandi, B. (2018). Pb(II) and Cd(II) removal from aqueous solution, shipyard wastewater, and landfill leachate by modified rhizopus oryzae biomass. Materials Research Express, 5(4), 045501. https://doi.org/10.1088/2053-1591/aab81b. Oladipo, O. G., Awotoye, O. O., Olayinka, A., Bezuidenhout, C. C., & Maboeta, M. S. (2018). Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49(1), 29–37. https://doi.org/10.1016/j.bjm.2017.06.003 Pal, S. K., & Das, T. K. (2005). Biochemical characterization of N-methyl N′-nitro-N-nitrosoguanidine- induced cadmium resistant mutants of Aspergillus niger. Journal of Biosciences, 30(5), 639–646. https://doi.org/https://doi.org/10.1007/BF02703564 Pérez Bou, L., Salgado Bernal, I., Larrea Duarte, C., Martínez Sardiñas, A., Cruz Arias, M. E., & Carballo Valdés, M. E. (2018). Biosorción microbiana de metales pesados : características del proceso. Revista Cubana de Ciencias Biológicas, 6(1), 1–12. http://www.rccb.uh.cu/index.php/RCCB/article/view/216 Qayyum, S., Khan, I., Maqbool, F., Zhao, Y., Gu, Q., & Peng, C. (2016). Isolation and characterization of heavy metal resistant fungal isolates from industrial soil in China. Pakistan Journal of Zoology, 48(5), 1241–1247. https://www.researchgate.net/publication/297732291_Isolation_and_characterization_of_heavy_metal_resistant_fungal_isolates_from_Industrial_soil_China Sanchez, J. G., Marrugo, J. L., & Urango, I. D. (2014). Biosorción simultanea de plomo y cadmio en solución acuosa por biomasa de hongos Penicillium sp. Temas Agrarios, 19(1), 63–72. https://doi.org/https://doi.org/10.21897/rta.v19i1.725 Shakya, M., Sharma, P., Meryem, S. S., Mahmood, Q., & Kumar, A. (2016). Heavy Metal Removal from Industrial Wastewater Using Fungi: Uptake Mechanism and Biochemical Aspects. Journal of Environmental Engineering, 142(9). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000983 Singh, R. K., Tripathi, R., Ranjan, A., & Srivastava, A. K. (2020). Fungi as potential candidates for bioremediation. In Abatement of Environmental Pollutants (pp. 177–191). Elsevier Inc. https://doi.org/10.1016/b978-0-12-818095-2.00009-6 Vala, A. K., & Sutariya, V. (2012). Trivalent arsenic tolerance and accumulation in two facultative marine fungi. Jundishapur Journal of Microbiology, 5(4), 542–545. https://doi.org/10.5812/jjm.3383 Verma, S., & Kuila, A. (2019). Bioremediation of heavy metals by microbial process. Environmental Technology and Innovation, 14, 100369. https://doi.org/10.1016/j.eti.2019.100369 Villanueva Vega, J. A. (2015). Determinación de la biorremoción de plomo (Pb+2) mediante hongos y microalgas nativas aisladas de efluentes industriales empacadas en un sistema en serie de agitación continua [Universidad Nacional de San Agustín]. http://repositorio.unsa.edu.pe/handle/UNSA/450 Zhao, M. hua, Zhang, C. sheng, Zeng, G. ming, Huang, D. lian, & Cheng, M. (2016). Toxicity and bioaccumulation of heavy metals in Phanerochaete chrysosporium. Transactions of Nonferrous Metals Society of China, 26(5), 1410–1418. https://doi.org/10.1016/S1003-6326(16)64245-0Derechos de autor 2020 Hugo APAZA-AQUINO, María del Rosario VALDERRAMA VALENCIAhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccess2021-06-04T16:05:42Zmail@mail.com -
score 13.945474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).