Prediction of beef marbling using Hyperspectral Imaging (HSI) and Partial Least Squares Regression (PLSR)

Descripción del Articulo

The aim of this study was to build a model to predict the beef marbling using HSI and Partial Least Squares Regression (PLSR). Totally 58 samples of longissmus dorsi muscle were scanned by a HSI system (400 - 1000 nm) in reflectance mode, using 44 samples to build the PLSR model and 14 samples to mo...

Descripción completa

Detalles Bibliográficos
Autores: Aredo, Victor, Velásquez, Lía, Siche, Raúl
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Nacional de Trujillo
Repositorio:Revista UNITRU - Scientia Agropecuaria
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/1416
Enlace del recurso:http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/1416
Nivel de acceso:acceso abierto
Materia:hyperspectral image
marbling
partial least squares
prediction.
id 2411-1783_8c901266eb11cc72bd0bb112e3632321
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/1416
network_acronym_str 2411-1783
repository_id_str .
network_name_str Revista UNITRU - Scientia Agropecuaria
spelling Prediction of beef marbling using Hyperspectral Imaging (HSI) and Partial Least Squares Regression (PLSR)Aredo, VictorVelásquez, LíaSiche, Raúlhyperspectral imagemarblingpartial least squaresprediction.The aim of this study was to build a model to predict the beef marbling using HSI and Partial Least Squares Regression (PLSR). Totally 58 samples of longissmus dorsi muscle were scanned by a HSI system (400 - 1000 nm) in reflectance mode, using 44 samples to build the PLSR model and 14 samples to model validation. The Japanese Beef Marbling Standard (BMS) was used as reference by 15 middle-trained judges for the samples evaluation. The scores were assigned as continuous values and varied from 1.2 to 5.3 BMS. The PLSR model showed a high correlation coefficient in the prediction (r = 0.95), a low Standard Error of Calibration (SEC) of 0.2 BMS score, and a low Standard Error of Prediction (SEP) of 0.3 BMS score.Universidad Nacional de Trujillo2017-07-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/141610.17268/sci.agropecu.2017.02.09Scientia Agropecuaria; Vol. 8 No. 2 (2017): April-June; 169-174Scientia Agropecuaria; Vol. 8 Núm. 2 (2017): Abril - Junio; 169-1742306-67412077-9917reponame:Revista UNITRU - Scientia Agropecuariainstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttp://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/1416/1429Derechos de autor 2017 Scientia Agropecuariainfo:eu-repo/semantics/openAccess2021-06-01T15:35:25Zmail@mail.com -
dc.title.none.fl_str_mv Prediction of beef marbling using Hyperspectral Imaging (HSI) and Partial Least Squares Regression (PLSR)
title Prediction of beef marbling using Hyperspectral Imaging (HSI) and Partial Least Squares Regression (PLSR)
spellingShingle Prediction of beef marbling using Hyperspectral Imaging (HSI) and Partial Least Squares Regression (PLSR)
Aredo, Victor
hyperspectral image
marbling
partial least squares
prediction.
title_short Prediction of beef marbling using Hyperspectral Imaging (HSI) and Partial Least Squares Regression (PLSR)
title_full Prediction of beef marbling using Hyperspectral Imaging (HSI) and Partial Least Squares Regression (PLSR)
title_fullStr Prediction of beef marbling using Hyperspectral Imaging (HSI) and Partial Least Squares Regression (PLSR)
title_full_unstemmed Prediction of beef marbling using Hyperspectral Imaging (HSI) and Partial Least Squares Regression (PLSR)
title_sort Prediction of beef marbling using Hyperspectral Imaging (HSI) and Partial Least Squares Regression (PLSR)
dc.creator.none.fl_str_mv Aredo, Victor
Velásquez, Lía
Siche, Raúl
author Aredo, Victor
author_facet Aredo, Victor
Velásquez, Lía
Siche, Raúl
author_role author
author2 Velásquez, Lía
Siche, Raúl
author2_role author
author
dc.subject.none.fl_str_mv hyperspectral image
marbling
partial least squares
prediction.
topic hyperspectral image
marbling
partial least squares
prediction.
dc.description.none.fl_txt_mv The aim of this study was to build a model to predict the beef marbling using HSI and Partial Least Squares Regression (PLSR). Totally 58 samples of longissmus dorsi muscle were scanned by a HSI system (400 - 1000 nm) in reflectance mode, using 44 samples to build the PLSR model and 14 samples to model validation. The Japanese Beef Marbling Standard (BMS) was used as reference by 15 middle-trained judges for the samples evaluation. The scores were assigned as continuous values and varied from 1.2 to 5.3 BMS. The PLSR model showed a high correlation coefficient in the prediction (r = 0.95), a low Standard Error of Calibration (SEC) of 0.2 BMS score, and a low Standard Error of Prediction (SEP) of 0.3 BMS score.
description The aim of this study was to build a model to predict the beef marbling using HSI and Partial Least Squares Regression (PLSR). Totally 58 samples of longissmus dorsi muscle were scanned by a HSI system (400 - 1000 nm) in reflectance mode, using 44 samples to build the PLSR model and 14 samples to model validation. The Japanese Beef Marbling Standard (BMS) was used as reference by 15 middle-trained judges for the samples evaluation. The scores were assigned as continuous values and varied from 1.2 to 5.3 BMS. The PLSR model showed a high correlation coefficient in the prediction (r = 0.95), a low Standard Error of Calibration (SEC) of 0.2 BMS score, and a low Standard Error of Prediction (SEP) of 0.3 BMS score.
publishDate 2017
dc.date.none.fl_str_mv 2017-07-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/1416
10.17268/sci.agropecu.2017.02.09
url http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/1416
identifier_str_mv 10.17268/sci.agropecu.2017.02.09
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/1416/1429
dc.rights.none.fl_str_mv Derechos de autor 2017 Scientia Agropecuaria
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2017 Scientia Agropecuaria
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 8 No. 2 (2017): April-June; 169-174
Scientia Agropecuaria; Vol. 8 Núm. 2 (2017): Abril - Junio; 169-174
2306-6741
2077-9917
reponame:Revista UNITRU - Scientia Agropecuaria
instname:Universidad Nacional de Trujillo
instacron:UNITRU
reponame_str Revista UNITRU - Scientia Agropecuaria
collection Revista UNITRU - Scientia Agropecuaria
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1701379322442416128
score 13.983407
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).